a,chứng minh rằng x-x mũ2 -3<0 với mọi giá trị của x. b, tìm dư trong phép chia đa thức M(x) cho đa thức N(x) biết:
M(x)=x mũ 2018-3x mũ 1999 -1 và N(x)=x mũ2+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18-2\right)\)
\(=6x^2+19x-7-6x^2-x+5-16=18x-18\)
Vậy biểu thức phụ thuộc biến x
b, \(\left(x-2\right)\left(x+1\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=\left(x^2-x-2\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=2x^3+x^2-2x^2-1-4x-2-2x^3+2x+5x+1=-x^2-2+3x\)
Vậy biểu thức phụ thuộc biến x
cho a+b+c=a mũ 2 +b mũ 2 +c mũ 2=2 và x:y:z=a:b:c chứng minh rằng(x+y+z)mũ 2=2x mũ 2 +2y mũ 2+2z mũ2
Ta thấy: a2-1=(a-1).(a+1)
Vì p là số nguyên tố lớn hơn 3
=>p=2k+1
=>(a-1).(a+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)
=2k.2.(k+1)
=4.k.(k+1)
Vì k và k+1 là 2 số tự nhiên liên tiếp
=>k.(k+1) chia hết cho 2
=>4.(k).(k+1) chia hết cho 8
=>a2-1 chia hết cho 8(1)
Lại có:
Vì a là số nguyên tố lớn hơn 3
=>a không chia hết cho 3
=>a2 chia 3 dư 1
=>a2-1 chia hết cho 3(2)
Từ (1) và (2) ta thây:
a2-1 chia hết cho 8 và 3
mà (8,3)=1
=>a2-1 chia hết cho 8.3
=>a2-1 chia hết cho 24
Vậy a2-1 chia hết cho 24
k cho mk nha\\\^-^
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
Có 90 số hạng nên ghép từng cặp 2 số ta có
A= (2+22)+(23+24)...+(289+290)
= 2(1+2)+23(1+2)+...+289(1+2)
= 2.3+22.3+...+289.3 chia hết cho 3
ghép từng cặp 3 số
A= (2+22+23)+....+(288+289+290)
= 2(1+2+22)+....+288(1+2+22)
= 2.7+....+288.7 chia hết cho 7
mà (3;7)=1 => A chia hết cho 3.7=21
2x(3y-2)+(3y-2) = (2x+1)(3y-2) = -55.Lập bảng :
2x+1 | -55 | -11 | -5 | -1 | 1 | 5 | 11 | 55 |
3y-2 | 1 | 5 | 11 | 55 | -55 | -11 | -5 | -1 |
2x | -56 | -12 | -6 | -2 | 0 | 4 | 10 | 54 |
3y | 3 | 7 | 13 | 57 | -53 | -9 | -3 | 1 |
x | -28 | -6 | -3 | -1 | 0 | 2 | 5 | 27 |
y | 1 | 19 | -3 | -1 |
Vậy (x;y) = (-28;1);(-1;19);(2;-3);(5;-1)
Ta có:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)
\(\Rightarrow ac+bc-a^2-ba=ca+a^2-bc-ba\)
\(\Rightarrow2a^2=2bc\)
\(\Rightarrow a^2=bc\)
\(\Rightarrowđpcm\)