Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = n2 - 1 = (n - 1)(n + 1)
Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)
- Nếu n = 3k + 1 thì:
A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3
- Nếu n = 3k + 2 thì:
A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3
Từ hai trường hợp trên ta có A \(⋮\) 3 (2)
Mà (8,3) = 1 (3)
Từ (1),(2),(3) => \(A⋮24\)
Ta có ( a2-1)=(a+1)(a-1)
* Vì a lớn hơn 3 nên a là số lẻ, do đó (a2-1) chia hết cho 24 là tích của 2 số tự nhiên chẵn liên tiếp
\(\Rightarrow\) chia hết cho 8 (1)
* Trong 3 số tự nhiên liên tiếp thì tồn tại 1 số chia hết cho 3 nên tích 3 số tự nhiên liên tiếp chia hết cho 3 hay ( a+1) a(a-1) chia hết cho 3 , do a là số nguyên tố lớn hơn 3 nên a không thể chia hết cho 3. Do đó (a2-1) chia hết cho 24 \(\Rightarrow\) (a+1)(a-1) chia hết cho 2 (2).
Từ (1) và (2) \(\Rightarrow\) chia hết cho 24 . (đpcm)
Lời giải:
a.
$2n^2+n-6=n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1$ là ước của $6$
Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
b.
Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$
Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$
Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$
Suy ra $p^2-1$ luôn chia hết cho $3$ (*)
Mặt khác:
$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$
$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)
Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3
p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24;
Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.
Vì p là số nguyên tố >3 nên p là số lẻ
→ 2 số p-2,p+1 là 2 số chẵn liên tiếp
→(p-2)(p+1) ⋮ cho 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên
→ p=3k+1 hoặc p=3k+2 (k thuộc N*)
+)Với p=3k+1 → (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)
+) Với p=3k+2 → (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)
Từ (*) và (**) →(p-2)(p+1) ⋮ 3 (2)
Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24
Ta thấy: a2-1=(a-1).(a+1)
Vì p là số nguyên tố lớn hơn 3
=>p=2k+1
=>(a-1).(a+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)
=2k.2.(k+1)
=4.k.(k+1)
Vì k và k+1 là 2 số tự nhiên liên tiếp
=>k.(k+1) chia hết cho 2
=>4.(k).(k+1) chia hết cho 8
=>a2-1 chia hết cho 8(1)
Lại có:
Vì a là số nguyên tố lớn hơn 3
=>a không chia hết cho 3
=>a2 chia 3 dư 1
=>a2-1 chia hết cho 3(2)
Từ (1) và (2) ta thây:
a2-1 chia hết cho 8 và 3
mà (8,3)=1
=>a2-1 chia hết cho 8.3
=>a2-1 chia hết cho 24
Vậy a2-1 chia hết cho 24
k cho mk nha\\\^-^