Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
Ta có : 21=3.7
Nên A chia hết cho 3 và 7
A=2+2^2+2^3+...+2^30
A=(2+2^2)+(2^3+2^4)...+(2^29+2^30)
A=2^2(1+2)+2^3(1+2)+...+2^29(1+2)
A=2^2x3+2^3x3+...+2^29x3
A=3(2^2+2^3+....2^29) chia hết cho 3
A=2+2^2+2^3+...+2^30
A=(2+2^2+2^3)+(2^4+2^5+2^6)...+(2^28+2^29+2^30)
A=2^3(1+2+4)+2^4(1+2+4)+...+2^28(1+2+4)
A=2^3x7+2^4x7+...+2^28x7
A=7(2^3+2^4....2^28) chia hết cho 7
Vay A chia hết cho 21
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
-Ta có: (a+9)-(a+2)=7 chia hết cho 7 nên (a+2) và (a+9) có cùng số dư khi chia cho 7
-Xét 2 trường hợp:
*TH1: a+2 và a+9 cùng không chia hết cho 7. Khi đó (a+2)*(a+9)+21 không chia hết cho 7, nên không chia hết cho 49.
*TH2: a+2 và a+9 cùng chia hết cho 7. Khi đó (a+2)*(a+9) chia hết cho 49 nên (a+2)*(a+9)+21 không chia hết cho 49
Có 90 số hạng nên ghép từng cặp 2 số ta có
A= (2+22)+(23+24)...+(289+290)
= 2(1+2)+23(1+2)+...+289(1+2)
= 2.3+22.3+...+289.3 chia hết cho 3
ghép từng cặp 3 số
A= (2+22+23)+....+(288+289+290)
= 2(1+2+22)+....+288(1+2+22)
= 2.7+....+288.7 chia hết cho 7
mà (3;7)=1 => A chia hết cho 3.7=21