K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

\(P=2017-\frac{2-4x}{x^2+2}=2018-1-\frac{2-4x}{x^2+2}=2018-\left(\frac{x^2-4x+4}{x^2+2}\right)=2018-\frac{\left(x-2\right)^2}{x^2+2}\le2018\)

"=" xảy ra <=> x =2 

Vậy GTLN của P = 2018 <=> x =2.

2 tháng 10 2017

\(2017-4x-x^2=2021-\left(x^2+4x+4\right)=2021-\left(x+2\right)^2\le2021\)

dấu "=" xảy ra khi x=-2

vậy gtln của biểu thức là 2021 khi x=-2

30 tháng 6 2017

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

2 tháng 12 2017

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

23 tháng 12 2015

\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)

\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)

\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)

Max A = -3 khi x =-2 (TM)

2 tháng 12 2018

\(P=\frac{3x^2-4x}{\left(x-1\right)^2}=\frac{4x^2-8x+4-\left(x^2-4x+4\right)}{\left(x-1\right)^2}=\frac{4\left(x-1\right)^2-\left(x-2\right)^2}{\left(x-1\right)^2}=4-\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\le4\forall x\)

Dấu "=" xảy ra khi: \(x-2=0\Leftrightarrow x=2\)

Vậy GTLN của P là 4 khi \(x=2\)

29 tháng 12 2019

\(\frac{3x^2-4x}{\left(x-1\right)^2}=4-\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\le4\forall x\)

Dấu ''='' xảy ra khi và chỉ khi :x-2=0 <=> x=2

Vậy Max P=4 khi x=2