K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

\(\left(x-1\right)^{2016}\ge0\)

\(\left|y+3\right|\ge0\)

\(\left(x-1\right)^{2016}+\left|y+3\right|+2017\ge2017\)

\(MinB=2017\Leftrightarrow x=1;y=-3\)

11 tháng 5 2018

trừ mỗi vế cho 2 rồi tách -2 thành -1và -1

11 tháng 5 2018

X=1 nhé

30 tháng 3 2018

Bài 1 : dễ bạn tự làm được :) 

Bài 2 : 

Ta có : 

\(B=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Vì : 

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Leftrightarrow\)\(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

30 tháng 3 2018

Ta có :  B = 2016 + 2017 + 2018 2015 + 2016 + 2017 = 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 Vì :  2016 2015 > 2016 + 2017 + 2018 2015 2017 2016 > 2016 + 2017 + 2018 2016 2018 2017 > 2016 + 2017 + 2018 2017 Nên  2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 + 2018 2016 + 2016 + 2017 + 2018 2017 ⇔ 2016 2015 + 2017 2016 + 2018 2017 > 2016 + 2017 + 2018 2015 + 2016 + 2017 ⇔A > B Vậy A > B Chúc bạn học tốt ~ 

23 tháng 11 2018

Em chuyển sang cùng một vế rồi ghép cái đầu vói cái thứ 3 cái thứ 2 với cái cuối. :)Dùng quy đồng :)

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

7 tháng 5 2019

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\)                        \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)

\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)

\(\text{Mà }\frac{1}{2016!}< 1\)

\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)

\(\Rightarrow\text{ }x>\frac{1}{2016!}\)

\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)

24 tháng 4 2017

Đặt C = 1 + 2017 + 20172 + ... + 20172016 ; D = 1 + 2016 + 20162 + ... + 20162016

Ta có : 2017C = 2017 + 20172 + 20173 + ... + 20172017

=> 2016C = 2017C - C = 20172017 - 1\(\Rightarrow C=\frac{2017^{2017}-1}{2016}\)

2016D = 2016 + 20162 + 20163 + ... + 20162017

=> 2015D = 2016D - D = 20162017 - 1\(\Rightarrow D=\frac{2016^{2017}-1}{2015}\)

\(\Rightarrow A=\frac{2017^{2017}}{\frac{2017^{2017}-1}{2016}}=\frac{2017^{2017}.2016}{2017^{2017}-1}\);\(B=\frac{2016^{2017}}{\frac{2016^{2017}-1}{2015}}=\frac{2016^{2017}.2015}{2016^{2017}-1}\)

Ta có : 20172017.2016.(20162017 - 1) - 20162017.2015.(20172017 - 1)

= 20172017.20162017.2016 - 20172017.2016 - 20172017.20162017.2015 + 20162017.2015

= 20172017.20162017 - 20172017.2016 + 20162017.2015

= 20172017.(20162017 - 2016) + 20162017.2015 > 0

=> A > B

24 tháng 4 2017

Ta có 

\(A=1:\frac{1+2017+2017^2+...+2017^{2016}}{2017^{2017}}\)

\(B=1:\frac{1+2016+2016^2+...2016^{2016}}{2016^{2017}}\)

\(A=1:\left(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}\right)\)

\(B=1:\left(\frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\right)\)

Có 20172017>20162017 ;  20172016>20162016 ;  20172015>20162015;..... ; 2017>2016

=> \(\frac{1}{2017^{2017}}< \frac{1}{2016^{2017}};\frac{1}{2017^{2016}}< \frac{1}{2016^{2016}};\frac{1}{2017^{2015}}< \frac{1}{2016^{2015}};...;\frac{1}{2017}< \frac{1}{2016}\)

=> \(\frac{1}{2017^{2017}}+\frac{1}{2017^{2016}}+\frac{1}{2017^{2015}}+...+\frac{1}{2017}< \frac{1}{2016^{2017}}+\frac{1}{2016^{2016}}+\frac{1}{2016^{2015}}+...+\frac{1}{2016}\)

=> A>B ( vì số bị chia và số chia của A và B đều dương, số bị chia của cả 2 đều là 1, cái nào có số chia nhỏ hơn thì lớn hơn)