CMR: Nếu \(\overline{abc}⋮27\) thì \(\overline{bca}⋮27\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(\overline{abcd}=100\overline{ab}+\overline{cd}\)
\(=100.2\overline{cd}+\overline{cd}\)
\(=201\overline{cd}\)
Mà \(201⋮67\)
\(\Rightarrow\overline{abcd}⋮67\)
b)
\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)
\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)
\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)
\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)
\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)
\(\Rightarrow\overline{bca}⋮27\)
Bài 2:
\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)
\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)
\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)
Mà \(11⋮11\)
\(\Rightarrow\overline{ab}.11.9⋮11\)
\(\Rightarrow\overline{abcd}⋮11\).
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
\(\overline{abc}⋮27\)
=>\(100a+10b+c⋮27\)
=>\(81a+19a+10b+c⋮27\)
=>\(19a+10b+c⋮27\)
\(\overline{bca}=100b+10c+a=81b+19a+10b+c+\left(9b+9c-18a\right)\)
=>\(\overline{bca}=81b+\left(19a+10b+c\right)+9\left(b+c-2a\right)\)
\(b+c-2a=b+c+a-3a⋮3\)(Vì \(\overline{abc}\) chia hết cho 27 nên a+b+c chia hết cho 3)
=>9(b+c-2a) chia hết cho 27
=>\(\overline{bca}\) chia hết cho 27(ĐPCM)
S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương
lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0
Ta có:
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(\Rightarrow S=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(\Rightarrow S=100a+10b+c+100b+10c+a+100c+10a+b\)
\(\Rightarrow S=111a+111b+111c\)
\(\Rightarrow S=111\left(a+b+c\right)\)
\(\Rightarrow S=37.3\left(a+b+c\right)\)
Giả sử \(S\) là số chính phương thì S phải chứa \(37\) mủ với số chẵn
\(\Rightarrow3\left(a+b+c\right)⋮37\)
\(\Rightarrow a+b+c⋮37\)
Điều này không xảy ra vì \(1\le a+b+c\le27\)
Vậy \(S=\overline{abc}+\overline{bca}+\overline{cab}\) không phải là số chính phương (Đpcm)
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
Bạn tham khảo :
Câu hỏi của Soái ca 2k6
Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.
=> 1000a + bc0 chia hết cho 27.
=> 999a + a + bc0 chia hết cho 27.
=> 27.37.a + bac chia hết cho 27.
Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )