Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.
=> 1000a + bc0 chia hết cho 27.
=> 999a + a + bc0 chia hết cho 27.
=> 27.37.a + bac chia hết cho 27.
Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )
phần a mk ko hỉu lắm còn phần b thì có 1 số 135 chia hết cho 37 nhưng 531 không chia hết cho 27
vì abc chia hết cho 27, mà \(27=3^3\)=> abc phải chia hết cho 3
để abc chia hết cho 3 <=> a+b+c \(⋮\)3
do abc chia hết cho 3 phụ thuộc vào tổng các chữ số
=> \(abc⋮3\Rightarrow bca⋮3\)hay bca chia hết cho 27
abc chia hết cho 27
\(\Rightarrow\)( 100a + 10b + c ) chia hết cho 27
\(\Rightarrow\)10 . ( 100a + 10b + c ) chia hết cho 27
\(\Rightarrow\)1000a + 100b + 10c chia hết cho 27
\(\Rightarrow\)999a + ( 100b + 10c + a ) chia hết cho 27
Mà 999a chia hết cho 27 \(\Rightarrow\)bca chia hết cho 27 .
Ta có abc chia hết cho 27 thì abc0 chia hết cho 27.
-> a000 + bc0 chia hết cho 27
-> 1000.a +bc0 chia hết cho 27
-> 999.a + a + bc0 chia hết cho 27
-> 37 x 27 x a + bca chia hết cho 27
Do 37 x 27 x a chia hết cho 27 nên bca chia hết cho 27.
\(a\), \(abc⋮37\Rightarrow cba⋮37\)
\(Ta\) \(có\) :
\(abc⋮37\Rightarrow100a+10b+c⋮37\)
\(abc⋮37\Rightarrow10abc⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
\(\Rightarrow999a+\left(100b+10c+a\right)⋮37\)
=> \(999a+bca⋮37\)
\(Mà\) \(999a⋮37\)
\(\Rightarrow bca⋮37\)
\(\Rightarrowđpcm\)
\(b\)) \(Lại\) \(có\) : \(bca⋮37\) \(\left(cmt\right)\)
\(\Rightarrow10bca⋮37\)
\(\Rightarrow1000b⋮100c+10a+b⋮37\)
\(\Rightarrow999b+100c+10a+b⋮37\)
Mà \(999b⋮37\)
\(\Rightarrow999b⋮37\)
\(\Rightarrowđpcm\)
abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10﴾100a + 10b + c﴿ chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + ﴾100b + 10c + a﴿ chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
\(\overline{abc}⋮27\)
=>\(100a+10b+c⋮27\)
=>\(81a+19a+10b+c⋮27\)
=>\(19a+10b+c⋮27\)
\(\overline{bca}=100b+10c+a=81b+19a+10b+c+\left(9b+9c-18a\right)\)
=>\(\overline{bca}=81b+\left(19a+10b+c\right)+9\left(b+c-2a\right)\)
\(b+c-2a=b+c+a-3a⋮3\)(Vì \(\overline{abc}\) chia hết cho 27 nên a+b+c chia hết cho 3)
=>9(b+c-2a) chia hết cho 27
=>\(\overline{bca}\) chia hết cho 27(ĐPCM)