K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

Bạn tham khảo :

       Câu hỏi của Soái ca 2k6       

8 tháng 10 2019

Ta có: abc chia hết cho 27 => abc0 chia hết cho 27.

=> 1000a + bc0 chia hết cho 27.

=> 999a + a + bc0 chia hết cho 27.

=> 27.37.a + bac chia hết cho 27.

Vì 27.37.a chia hết cho 27 nên bac chia hết cho 27 ( đpcm )

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!

\(\overline{abc}⋮27\)

\(\Rightarrow\overline{abc0}⋮27\)

\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)

\(\Rightarrow999a+a+\overline{bc0}⋮27\)

\(\Rightarrow27.37a+\overline{bca}⋮27\)

do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)

13 tháng 11 2023

\(\overline{abc}⋮27\)

=>\(100a+10b+c⋮27\)

=>\(81a+19a+10b+c⋮27\)

=>\(19a+10b+c⋮27\)

\(\overline{bca}=100b+10c+a=81b+19a+10b+c+\left(9b+9c-18a\right)\)

=>\(\overline{bca}=81b+\left(19a+10b+c\right)+9\left(b+c-2a\right)\)

\(b+c-2a=b+c+a-3a⋮3\)(Vì \(\overline{abc}\) chia hết cho 27 nên a+b+c chia hết cho 3)

=>9(b+c-2a) chia hết cho 27

=>\(\overline{bca}\) chia hết cho 27(ĐPCM)

24 tháng 1 2019

S = 100a+10b+c + 100b+10c+a + 100c+10a+b = 111(a+b+c) = 3.37(a+b+c)
=> Để S là số chính phương thì a+b+c = 3.37 = 111
mà 10 > a,b,c > 0 => Max(a+b+c) = 9+9+9 = 27 < 111
Vậy S không phải số chính phương

24 tháng 1 2019

lưu ý điều kiện có a,b,c > 0 nên không thể cho S = 0 hay a+b+c = 0 là số chính phương khi và chỉ khi a=b=c=0

12 tháng 10 2017

\(A=\overline{abc}+\overline{bca}+\overline{cab}=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111\left(a+b+c\right)\)

 

Để A là 1 số chính phương thì a + b + c phải = 111. Nhưng a, b, c < 10 nên a + b + c \(\ne\) 111. \(\Rightarrow\) A không phải là 1 số chính phương \(\Rightarrow\)  ĐPCM

 

 

28 tháng 3 2016

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

Ta có:\(A=\overline{abc}+\overline{cab}+\overline{bca}=a.100+b.10+c+c.100+a.10+b+b.100+c.10+a\)

             \(=a.111+b.111+c.111=\left(a+b+c\right)111\)

Để A là số chính phương thì khi phân tích A ra số nguyên tố các thừa số đều mũ chẵn

Mà \(A=\left(a+b+c\right)111=\left(a+b+c\right).3.37\)

=>Để A là số chính phương thì a+b+c=3.37<=>a+b+c=111,mà \(a+b+c\le9\left(a;b;c\inℕ\right)\)

Vậy không có a;b;c thỏa mãn hay A không là số chính phương