Cho A= x/3 + 5/2x-1
ĐK : x>1/2. Tìm x để A đạt GTNN ( Giá Trị Nhỏ Nhất)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
\(a,ĐK:x\ge1;x\ne3\\ b,A=\dfrac{\left(\sqrt{x-1}+\sqrt{2}\right)\left(\sqrt{x-1}-\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
a) Vì |1/2 - x| lớn hơn hoặc bằng 0
nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2
b) Vì |2x + 2/3| lớn hơn hoặc bằng 0
nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.
a) Vì |1/2 - x| lớn hơn hoặc bằng 0
nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2
b) Vì |2x + 2/3| lớn hơn hoặc bằng 0
nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)