K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2014

a) Vì |1/2 - x| lớn hơn hoặc bằng 0

nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2

b) Vì |2x + 2/3| lớn hơn hoặc bằng 0

nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.

9 tháng 11 2014

a) Vì |1/2 - x| lớn hơn hoặc bằng 0

nên A lớn hơn hoặc bằng 3/5. Vậy A nhỏ nhất = 3/5 khi 1/2 - x = 0, hay là x = 1/2

b) Vì |2x + 2/3| lớn hơn hoặc bằng 0

nên B nhỏ hơn hoặc bằng 2/3. B lớn nhất = 2/3 khi 2x + 2/3 = 0, hay x = -2/6.

8 tháng 12 2020

cho hàm số f(x) thỏa mãn 2f(x) - x. f(-x) = x+10. tính f(2)

20 tháng 1 2019

Để M lớn nhất thì \(\left|x-3\right|\)nhỏ nhất

Mà \(\left|x-3\right|\ge0\)

Dấu bằng xảy ra khi và chỉ khi:x=3

Vậy \(M_{MAX}=9\)tại \(x=3\)

câu a x là vô hạn nha

20 tháng 1 2019

a, Ta có: \(\left|x-3\right|\ge0\)

=>\(-5+\left|x-3\right|\ge-5+0\)

=>\(M\ge-5\)

 Dấu"=" xảy ra <=>x-3=0=> x=3

Vậy Min M= -7 <=> x=3

b,Ta có :\(-\left|x-3\right|\le0\)

=>\(9-\left|x-3\right|\le9-0\)

=>\(M\le9\)

Dấu "=" xảy ra <=>x-3=0 =>x=3

Vậy Max M= 9 <=>x=3

19 tháng 7 2020

Bài 1.

a.Ta có: (x - 1)2  ≥ 0 với mọi x ∈ Z

=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z

Dấu "=" xảy ra khi (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

Vậy GTNN của A là 12 tại x = 1.

b. Có: |x + 3| ≥ 0 với mọi x ∈ Z

=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z

Dấu "=" xảy ra khi |x + 3| = 0

=> x + 3 = 0

=> x = -3

Vậy GTNN của B là 2020 tại x = -3.

Bài 2.

Có: |3 - x| ≥ 0 với mọi x ∈ Z

=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z

Dấu "=" xảy ra khi |3 - x| = 0

=> 3 - x = 0

=> x = 3

Vậy GTLN của Q là 20 tại x = 3.

19 tháng 7 2020

1. A = ( x - 1 )2 + 12

\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)

Dấu = xảy ra <=> x - 1 = 0 => x = 1

Vậy AMin = 12 khi x = 1

B = | x + 3 | + 2020

\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)

Dấu = xảy ra <=> x + 3 = 0 => x = -3

Vậy BMin = 2020 khi x = -3 

2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )

Q = 20 - | 3 - x | 

\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)

=> \(20-\left|3-x\right|\le20\forall x\)

Dấu = xảy ra <=> 3 - x = 0 => x = 3

Vậy QMax = 20 khi x = 3 

3 tháng 6 2015

1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0

=> 1/2 -x =0 => x=1/2

2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất 

=> l 2x + 2/3 l = 0

=> 2x + 2/3 = 0

=> 2x = -2/3

=> x = -1/3

 

3 tháng 6 2015

1) ta có I 1/2 -xI\(\ge\)0

=>A=0,6+I 1/2 -xI\(\ge\)0,6

Dấu = xảy ra khi 1/2-x=0

                               x=1/2

Vậy GTNN của A là 0,6 tại x=1/2

2) ta có I2x+2/3I\(\ge\)0

=>-I2x+2/3I\(\le\)

=>B=2/3-I2x+2/3I\(\le\)2/3

Dấu = xảy ra khi 2x+2/3=0

                           2x     =-2/3

                             x    =-2/3:2

                             x    =-1/3

Vậy GTLN của B là 2/3 tại x=-1/3

 

14 tháng 6 2017

\(B=\left|x+2,8\right|-3,5\)

\(\left|x+2,8\right|\ge0\)

\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)

\(\Rightarrow\)GTNN của B là -3,5

\(A=\frac{1}{2}-\left|2x-3\right|\)

\(\left|2x-3\right|\ge0\)

\(\Rightarrow\frac{1}{2}-\left|2x-3\right|\le\frac{1}{2}\)

\(\Rightarrow\)GTLN của A là \(\frac{1}{2}\)khi và chỉ khi \(2x-3=0\)

                                                       \(\Rightarrow2x=3\)

                                                       \(\Rightarrow x=\frac{3}{2}\)