Tìm tập xác định D của hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\frac{1}{x}\left(x\ge1\right)\\\sqrt{2-x}\left(x< 2\right)\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
- Với \(x\ge1\) hàm luôn xác định
- Với \(x< 1\) hàm xác định khi:
\(x+1\ge0\Leftrightarrow x\ge-1\) \(\Rightarrow-1\le x< 1\)
Vậy: \(x\ge-1\)
b.
- Với \(x\le1\) \(\Rightarrow1-x\ge0\) hàm luôn xác định
- Với \(1< x\le5\) ta có \(x+1>0\) nên hàm cũng luôn xác định
Vậy hàm xác định với mọi \(x\le5\)
(Ủa kì quái sao câu này hàm chỉ cho x đến 5 thôi nhỉ, nhưng cũng ko ảnh hưởng gì, thấy hơi lạ 1 xíu)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)=3\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)
Hàm liên tục tại x=1 khi:
\(a+2=3\Leftrightarrow a=1\)
Hàm có TXĐ là R khi và chỉ khi: \(\left(m-2\right)x^2+\left(m-2\right)x+4\ge0;\forall x\)
- Với \(m=2\) thỏa mãn
- Với \(m\ne2\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2>0\\\Delta=\left(m-2\right)^2-16\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>2\\\left(m-2\right)\left(m-18\right)\le0\end{matrix}\right.\) \(\Rightarrow2< m\le18\)
Kết hợp lại ta được: \(2\le m\le18\)
Khi x<2 thì -3x>-6
=>-3x+8>2>0
=>\(y=\sqrt{-3x+8}+x\) luôn xác định khi x<2(1)
Khi x>=2 thì x+7>=9>0
=>\(f\left(x\right)=\sqrt{x+7}+1\) luôn xác định khi x>=2(2)
Từ (1),(2) suy ra tập xác định là D=R
d.
Với \(x-4\ne0;\forall x< 0\Rightarrow\dfrac{x-3}{x-4}\) xác định với mọi \(x< 0\)
\(x+1>0;\forall x\ge0\Rightarrow\sqrt{x+1}\) xác định với mọi \(x\ge0\)
\(\Rightarrow\) Hàm xác định trên R
e.
Ta có:
\(\sqrt{x^2+2x+5}-\left(x+1\right)=\sqrt{\left(x+1\right)^2+4}-\left(x+1\right)\)
\(>\sqrt{\left(x+1\right)^2}-\left(x+1\right)=\left|x+1\right|-\left(x+1\right)\ge0\) ; \(\forall x\)
\(\Rightarrow\) Hàm xác định trên R
Lời giải:
Cái này chỉ tính được giới hạn 1 bên thôi
\(\lim\limits_{x\to 1-}f(x)=\lim\limits_{x\to 1-}\frac{x^2+1}{1-x}=+\infty \) do $\lim\limits_{x\to 1-}(x^2+1)=2>0$ và $1-x>0$ với $x<1$
\(\lim\limits_{x\to 1+}\sqrt{2x-2}=\sqrt{2.1-2}=0\)
\(f\left(-1\right)=\lim\limits_{x\rightarrow-1^-}f\left(x\right)=\lim\limits_{x\rightarrow-1^-}\left(2-ax\right)=2+a\)
\(\lim\limits_{x\rightarrow-1^+}f\left(x\right)=\lim\limits_{x\rightarrow-1^+}\left(x^2-bx+2\right)=3+b\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(4x+a\right)=4+a\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(x^2-bx+2\right)=3-b\)
Hàm liên tục trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}2+a=3+b\\4+a=3-b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)
a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3
Tập xác định của y = là:
D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +∞)\{-1}
Có thể viết cách khác: D = [-3, -1] ∪ (-1, +∞)
b) Tập xác định
D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}
= [-∞, 2323 ]∩(-∞, 1212) = (-∞, 1212)
c) Tập xác định là:
D = [1, +∞) ∪ (-∞,1) = R
5\(\sqrt[]{^{ }]\prod_{ }^{ }}\)\(\)
Jchcufcndcundcurucnrucnruncrunub\(\prod\limits^{ }_{ }\)