Có bao nhiêu số nguyên m để pt sau : \(5sinx-12cosx=m\) có nghiệm ?
A . 13
B . Vô số
C . 26
D . 27
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn .
HELP ME !!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Để phương trình có nghiệm thì
m 2 ≤ 5 2 + − 12 2 ⇔ m 2 ≤ 169 ⇔ − 13 ≤ m ≤ 13 ⇒ số các giá trị nguyên của m là 13 − − 13 : 1 + 1 = 27
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
Kiến thức cần nhớ: \(\left\{{}\begin{matrix}ax+by=c\\a'x+b'y=c'\end{matrix}\right.\) hệ pt vô nghiệm ⇔\(\dfrac{a}{a'}=\dfrac{b}{b'}\ne\dfrac{c}{c'}\)
hệ pt có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\) (1) ta có: a = 1; b = -3; c = m và a' = 2; b' = - 6; c' = 8
Hệ (1) vô nghiệm ⇔ \(\dfrac{1}{2}\) = \(\dfrac{-3}{-6}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ \(\dfrac{1}{2}\) \(\ne\) \(\dfrac{m}{8}\)
⇔ m \(\ne\) 4
Hệ (1) có vô số nghiệm \(\Leftrightarrow\) \(\dfrac{1}{2}=\dfrac{-3}{-6}=\dfrac{m}{8}\) ⇔ \(\dfrac{1}{2}\) = \(\dfrac{m}{8}\) ⇔ m = 8\(\times\)\(\dfrac{1}{2}\) = 4
Kết luận:
+ hệ phương trình đã cho vô nghiệm khi m \(\ne\) 4 và có vô số nghiệm khi m = 4
\(\left\{{}\begin{matrix}x-3y=m\\2x-6y=8\end{matrix}\right.\)
\(D=-6+6=0\)
\(D_x=-6m+24\)
\(D_y=8-2m\)
Để hệ phương trình vô nghiệm
\(\Leftrightarrow D_x\ne0\cap D_y\ne0\left(D=0\right)\)
\(\Leftrightarrow-6m+24\ne0\cap8-2m\ne0\)
\(\Leftrightarrow m\ne4\)
Để hệ phương trình vô số nghiệm
\(\Leftrightarrow D=D_x=D_y=0\)
\(\Leftrightarrow m=4\) ( vì D luôn bằng 0)
Có bao nhiêu số nguyên m để pt sau : 5sinx−12cosx=m có nghiệm ?
A . 13
B . Vô số
C . 26
D . 27
bạn có thể trình bày bài giải chi tiết ko ạ