Cho tam giác ABC vuông tại A. Đường cao AH . M đối xứng với H qua AB. E là hình chiếu của F trên AC. MA cắt HE tại N . MH cắt AB tại F.
a) CMR: AC là phân giác góc 𝐻𝐴C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H có HE là đường cao
nên AH^2=AE*AB
b: ΔAHC vuông tại H có HF là đường cao
nên AH^2=AF*AC
=>AE*AB=AF*AC
=>AE/AC=AF/AB
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
a: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC và \(DE=\dfrac{1}{2}BC\)
DE//BC
mà H\(\in\)BC
nên DE//CH
Xét tứ giác DECH có DE//CH
nên DECH là hình thang
Ta có: ΔHAB vuông tại H
mà HD là đường trung tuyến
nên \(HD=DA=DB=\dfrac{AB}{2}\)
Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=AE=EC=\dfrac{AC}{2}\)
Xét ΔEAD và ΔEHD có
EA=EH
DA=DH
ED chung
Do đó: ΔEAD=ΔEHD
=>\(\widehat{EAD}=\widehat{EHD}=90^0\)
Xét tứ giác ADHE có
\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)
=>ADHE là tứ giác nội tiếp
b: Xét tứ giác AHCF có
E là trung điểm chung của AC và HF
=>AHCF là hình bình hành
Hình bình hành AHCF có \(\widehat{AHC}=90^0\)
nên AHCF là hình chữ nhật
a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Lời giải:
a. $E$ đối xứng với $M$ qua $AC$
$\Rightarrow AC$ là trung trực của $ME$
$\Rightarrow AC\perp ME$ tại trung điểm $P$ của $ME$
$\Rightarrow \widehat{P}=90^0$
Tứ giác $MQAP$ có 3 góc $\widehat{A}=\widehat{Q}=\widehat{P}=90^0$ nên là hcn
$\Rightarrow AM=PQ$
b.
$AP\perp ME$
$QM\perp ME$ (do $AQMP$ là hcn)
$\Rightarrow AP\parallel QM$
$\Rightarrow AP\parallel FM$
Áp dụng định lý Talet:
$\frac{AP}{FM}=\frac{EP}{EM}=\frac{1}{2}$
$\Rightarrow 2AP=FM=FQ+QM$
Mà $AP=QM$ (do $AQMP$ là hcn)
$\Rightarrow 2AP=FQ+AP\Rightarrow AP=FQ$
$\Rightarrow QM=FQ$
Ta thấy $FM\perp AB$ tại $Q$ mà $FQ=QM$ nên $F,M$ đối xứng nhau qua $Q$