tìm x:
(x-1)+2x(x-1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)
\(\Leftrightarrow-x^3+5x^2-5x=0\)
\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)
a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)
\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)
\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)
=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)
b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)
\(\Leftrightarrow-12=0\left(vn\right)\)
c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)
\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)
\(\Leftrightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a, (\(x-2\))2 - (2\(x\) + 3)2 = 0
(\(x\) - 2 - 2\(x\) - 3)(\(x\) - 2 + 2\(x\) + 3) = 0
(-\(x\) - 5)(3\(x\) +1) = 0
\(\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\3x=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\) { -5;- \(\dfrac{1}{3}\)}
b, 9.(2\(x\) + 1)2 - 4.(\(x\) + 1)2 = 0
{3.(2\(x\) + 1) - 2.(\(x\) +1)}{ 3.(2\(x\) +1) + 2.(\(x\) +1)} = 0
(6\(x\) + 3 - 2\(x\) - 2)(6\(x\) + 3 + 2\(x\) + 2) = 0
(4\(x\) + 1)(8\(x\) + 5) =0
\(\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{8}\end{matrix}\right.\)
S = { - \(\dfrac{5}{8}\); \(\dfrac{-1}{4}\)}
d, \(x^2\)(\(x\) + 1) - \(x\) (\(x+1\)) + \(x\)(\(x\) -1) = 0
\(x\left(x+1\right)\).(\(x\) - 1) + \(x\)(\(x\) -1) = 0
\(x\)(\(x\) -1)(\(x\) + 1 + 1) = 0
\(x\left(x-1\right)\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
S = { -2; 0; 1}
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
\(a,\left(2x-1\right)^2-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1-2x-3\right)=0\)
\(\Leftrightarrow-4\left(2x-1\right)=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(b,\left(x+5\right)\left(x-2\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+3x-10\right)-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2+3x-10-x^2+9=0\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
a) (2x - 1)2 - (2x + 3)(2x - 1) = 0
<=> (2x - 1)(2x - 1 - 2x - 3) = 0
<=> (2x - 1).(-4) = 0
<=> 2x - 1 = 0
<=> x = 1/2
Vậy x = 1/2 là nghiệm phương trình
b) Ta có (x - 5)(x - 2) - (x - 3)(x + 3) = 0
<=> x2 - 7x + 10 - x2 + 9 = 0
<=> -7x + 19 = 0
<=> -7x = - 19
<=> x = 19/7
Vây x = 19/7 là nghiệm phương trình
\(\left(x-1\right)+2x\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
x= 1 hoặc x= \(\frac{-1}{2}\)