Chứng minh :( a^ n)^m = a mũ m.n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (a mũ m)n = a mũ m.n
=> (a mũ m)n = (am)n = am.n
a mũ m.n = am.n
Vậy (am)n = am.n .
b) (a.b)mũ n = a mũ n . b mũ n
=> (a.b)mũ n = (a.b)n = an . bn
a mũ n . b mũ n = an . bn
Vậy (a.b)n = an .bn .
Ta có : 1+4+4^2+.............+4^15 có 16 số hạng
Mà 16 : 2 =8
\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)
\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13
\(\Rightarrow\)(1+4)(1+4+......+4^13)
\(\Rightarrow\)5(1+4+.....+4^13) \(⋮\)5 (ĐPCM)
(am)n=(a.a...a)n=an.an...an=an+n+n+...+n=am.n (m số a;m số n)
Ta có: (am)n=am.am....am ( n thừa số am)
=am+m+m+...+m (n số hạng m)
=amn
Vậy (am)n=amn (đpcm)
Ta có am.n=am+m+...+m( n thừa số m)=am.am....am( n thừa số am)=(am)n ( đpcm)
Em kiểm tra lại đề bài nhé! Tham khảo link:
Câu hỏi của Phan Thúy Vy - Toán lớp 7 - Học toán với OnlineMath