K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai hay sao ấy bn ạ?

a3-b3+ab(a-b) phải bằng (a-b)3 cơ!

31 tháng 7 2019

#)Sửa đề : a3 - b3 + ab(b - a)

#)Giải :

Ta có : \(VP=\left(a-b\right)\left(a+b\right)=a^3+ab^2-a^2b-b^3=a^3-b^3+ab\left(b-a\right)=VT\)

\(\Rightarrow a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)\)

25 tháng 6 2017

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

25 tháng 6 2017

hey you, còn câu b,c?

5 tháng 7 2017

(a-b)= (a-b).(a-b)

         = a2 - ab - ab + b2

         = a2 - 2ab + b2 (đpcm)

5 tháng 10 2021
Ko phải bạn ạ
10 tháng 8 2016

a)a2+b2+c2+3=2(a+b+c)

=>a2+b2+c2+1+1+1-2a-2b-2c=0

=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0

=>(a-1)2+(b-1)2+(c-1)2=0

=>a-1=b-1=c-1=0 <=>a=b=c=1 

-->Đpcm

b)(a+b+c)2=3(ab+ac+bc)

=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0 

=>a2+b2+c2-ab-ac-bc=0

=>2a2+2b2+2c2-2ab-2ac-2bc=0 

=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0

=>(a-b)2+(b-c)2+(c-a)2=0 

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

c)a2+b2+c2=ab+bc+ca

=>2(a2+b2+c2)=2(ab+bc+ca)

=>2a2+2b2+c2=2ab+2bc+2ca

=>2a2+2b2+c2-2ab-2bc-2ca=0

=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0

=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0

=>(a-b)2+(b-c)2+(a-c)2=0

Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0

=>a-b hoặc b=c hoặc a=c

=>a=b=c 

-->Đpcm

29 tháng 6 2017

b, ta có a3+ b3 = (a+b)(a2-ab +b2)

= (a+b)(a2 -ab +b2 -ab +ab)

= (a+b) ( a2-2ab +b +ab)

=(a+b) [ (a2-b2) +ab ]

vậy ...........................

29 tháng 6 2017

câu a bạn sai đề à

AH
Akai Haruma
Giáo viên
10 tháng 3 2021

** Bạn lưu ý lần sau viết đề bằng công thức toán (biểu tượng $\sum$ bên trái màn hình) để đề trông rõ ràng hơn $\Rightarrow$ khả năng được giải đáp cao hơn.

Sửa đề: CMR $\frac{a^3}{b}+\frac{b^3}{a}\geq 2$

Lời giải:

Áp dụng BĐT AM-GM: $\frac{a^3}{b}+\frac{b^3}{a}=\frac{a^4+b^4}{ab}$

$\geq \frac{(a^2+b^2)^2}{2ab}\geq \frac{2ab(a^2+b^2)}{2ab}=a^2+b^2(1)$

Mà:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$a^2+b^2\geq 2ab$

$\Rightarrow 2(a^2+b^2)+2\geq 2(a+b+ab)=6$

$\Rightarrow a^2+b^2\geq 2(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
10 tháng 3 2021

Cách khác:

Áp dụng BĐT AM-GM:

$\frac{a^3}{b}+b+1\geq 3a$

$\frac{b^3}{a}+a+1\geq 3b$

$\frac{a^3}{b}+\frac{b^3}{a}+ab\geq 3ab$

Cộng theo vế:

$\frac{a^3}{b}+\frac{b^3}{a}+(a+b+ab)+2\geq 3(a+b+ab)$

$\Leftrightarrow 2(\frac{a^3}{b}+\frac{b^3}{a})+3+2\geq 9$

$\Rightarrow \frac{a^3}{b}+\frac{b^3}{a}\geq 2$ (đpcm)

Dấu "=" xảy ra khi $a=b=1$

6 tháng 7 2016

a3-b3+ab(a-b)

=(a-b)(a2+ab+b2)+ab(a-b) (HĐT số 7)

=(a-b)(a2+ab+ab+b2)

=(a-b)(a2+2ab+b2)

=(a-b)(a+b) (HĐT số 1)

Đpcm

15 tháng 7 2017

Xét VP=(a+b)(a​^2-ab+b^2)

=a^3+a^2.b-a^2.b-a.b^2+a.b^2+b^3

=a^3+b^3

Mk giai nhu vay ban co hieu ko???

15 tháng 7 2017

\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3-a^2b+ab^2-ab^2\) \(+ba^2-ab^2+b^3=a^3+b^3\Rightarrowđpcm\)

13 tháng 8 2016

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(đpcm\right)\)