Tìm các số nguyên x sao cho x3-3x2+x+2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách này sử dụng các hằng đặng thức đáng nhớ:
\(A^2+2AB+B^2=\left(A+B\right)^2\)
và \(A^2-B^2=\left(A-B\right)\left(A+B\right)\)
Em tìm hiểu nhé!
Đặt : \(x^2-x-1=a^2\) nhân 4 vào 2 vế ta có:
\(4x^2+4x-4=4a^2\Leftrightarrow4x^2+4x+1-5=\left(2a\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2a\right)^2=5\)
<=> \(\left(2x+1-2a\right)\left(2x+1+2a\right)=5\)
Vì x, a nguyên nên mình sẽ có các trường hợp
TH1: \(\hept{\begin{cases}2x+1-2a=5\\2x+1+2a=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\a=-1\end{cases}}}\)thay vào thỏa mãn
TH2: \(\hept{\begin{cases}2x+1-2a=-5\\2x+1+2a=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=1\end{cases}}}\)thử vào thỏa mãn
TH3: \(\hept{\begin{cases}2x+1-2a=-1\\2x+1+2a=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\a=-1\end{cases}}}\)thử vào thỏa mãn
TH4: .....làm tiếp nhé
kết luận x=-2 hoặc x=1
Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow
k<100)\)
\(\Leftrightarrow
\)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow
\)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{}
\begin{cases}
k+x\sqrt{x+1}=81\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k+x\sqrt{x+1}=75\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
2k=106\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
2k=102\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
53-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k=51\\
51-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x\sqrt{x+1}=28
\end{cases}\\
\begin{cases}
k=51\\
x\sqrt{x+1}=24
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0
\end{cases}\\
\begin{cases}
k=51\\
x^3+x^2-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0(PTVN)
\end{cases}\\
\begin{cases}
k=51\\
x^3-8x^2+9x^2-72x+72x-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases}
k=51\\
(x-8)(x^2+9x+72)=0
\end{cases}\)
\(\Leftrightarrow\)\(\begin{cases}
k=51(t/m)\\
\left[\begin{array}{}
x=8(t/m)\\
(x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN)
\end{array} \right.
\end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên
#)Giải :
\(x^3-3x^2+x+2\)
\(=x^3-2x^2-x^2+2x-x+2\)
\(=x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-x-1\right)\)
Để \(x^3-3x^2+x+2\) là số chính phương \(\Leftrightarrow x-2=x^2-x-1\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow x=1\)