\(x^3-3x^2+x+2\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

\(\Rightarrow x-3⋮x^2+1\)

\(\Rightarrow\left(x+3\right)\left(x-3\right)⋮x^2+1\)

\(\Rightarrow x^2-9⋮x^2+1\)

mà \(x^2+1⋮x^2+1\)

\(\Rightarrow x^2-9-x^2-1⋮x^2+1\Rightarrow10⋮x^2+1\)

Xét từng TH ra

P/s : x2+1 lẻ

18 tháng 5 2019

\(a)\)\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}-x}{1-\sqrt{x}}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(\sqrt{x}-x\sqrt{x}\right)+\left(1-x\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(1-x\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\frac{\left(x-1\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}=\frac{-\left(1-x\right)\left(1-\sqrt{x}\right)}{1-x}=\sqrt{x}-1\)

\(b)\)\(P=\sqrt{9+4\sqrt{2}}-1=\sqrt{8+4\sqrt{2}+1}-1=\sqrt{\left(2\sqrt{2}+1\right)^2}-1=2\sqrt{2}\)

\(c)\) Ta có : \(\frac{2}{P}=\frac{2}{\sqrt{x}-1}\)

Để P nguyên thì \(\frac{2}{\sqrt{x}-1}\) nguyên hay \(2⋮\left(\sqrt{x}-1\right)\)\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)\(\Rightarrow\)\(x\in\left\{\sqrt{2};0;\sqrt{3}\right\}\)

Do x là số chính phương nên \(x=0\)

Vậy để \(\frac{2}{P}\) là số nguyên thì \(x=0\)

24 tháng 10 2020

Xem lời giải câu 6 IMO 1988

25 tháng 10 2020

đọc chả hiểu gì bạn ơi

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)