Cho a,b,c > 0 và a+b+c=3.
CMR: (a+b)(a+c)(b+c) ≥ (ab+c)(ac+b)(bc+a).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 2 biểu thức mà c/m 1 biểu thức M là sao
Biểu thức N vứt sọt à hay làm cái j v :V
tớ cũng nghĩ vậy nhưng mãi sau mới biết chứng minh M =N rồi chứng minh N >=(a+b+c)/8 để suy ra M >=(a+b+c)/8
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Áp dụng bđt cosi schwart ta có:
`VT>=(a+b+c)^2/(a+b+c+sqrt{ab}+sqrt{bc}+sqrt{ca})`
Dễ thấy `sqrt{ab}+sqrt{bc}+sqrt{ca}<a+b+c`
`=>VT>=(a+b+c)^2/(2(a+b+c))=(a+b+c)/2=3`
Dấu "=" `<=>a=b=c=1.`
Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)
Ta lại có (a+b+c)2=a2+b2+c2
=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2
=> 2(ab+bc+ac)=0=> ab+bc+ac=0
Ta cần chứng minh bài toán phụ x+y+z=0 thì
x3+y3+z3=3xyz
Ta thấy x+y+z=0=> x+y=-z
=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3
=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz
Áp dụng vào bài toán ta có
ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2
=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
=> đpcm
a.
\(\sum\dfrac{ab}{a+c+b+c}\le\dfrac{1}{4}\sum\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)=\dfrac{a+b+c}{4}\)
2.
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{a+b+2c+2b}\le\dfrac{ab}{9}\left(\dfrac{4}{a+b+2c}+\dfrac{1}{2b}\right)=4.\dfrac{ab}{a+b+2c}+\dfrac{a}{18}\)
Quay lại câu a
Lời giải:
Áp dụng BĐT AM-GM ta có:
\((ab+c)(ac+b)\leq \left(\frac{ab+c+ac+b}{2}\right)^2=\frac{(a+1)^2(b+c)^2}{4}\)
\((ab+c)(bc+a)\leq \left(\frac{ab+c+bc+a}{2}\right)^2=\frac{(b+1)^2(c+a)^2}{4}\)
\((ac+b)(bc+a)\leq \left(\frac{ac+b+bc+a}{2}\right)^2=\frac{(c+1)^2(a+b)^2}{4}\)
Nhân theo vế:
\(\Rightarrow [(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2.\frac{[(a+1)(b+1)(c+1)]^2}{64}\)
Mà:
\((a+1)(b+1)(c+1)\leq \left(\frac{a+1+b+1+c+1}{3}\right)^3=(\frac{6}{3})^3=8\)
Do đó:
\(\Rightarrow [(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2.\frac{8^2}{64}\)
\(\Leftrightarrow[(ab+c)(ac+b)(bc+a)]^2\leq [(a+b)(b+c)(c+a)]^2\)
\(\Rightarrow (ab+c)(ac+b)(bc+a)\leq (a+b)(b+c)(c+a)\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$