\(x\sqrt{x}+y\sqrt{y}+2x\sqrt{y}+2y\sqrt{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{\frac{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{x}\left(x+y\right)}{\sqrt{x}}\right\}.\left(\frac{\sqrt{x}-\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\right)^2.\)
=> \(A=\left(2\sqrt{xy}+x+y\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
=> \(A=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=1\)
ĐS: A=1
Với mọi a;b;c không âm ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Áp dụng:
a.
\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
b.
\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)
Dấu "=" xảy ra khi \(x=y=z=2\)
c.
\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)
Dấu "=" xảy ra khi \(x=y=z=2\)
ĐKXĐ:...
- Với \(y=0\Rightarrow x=0\)
- Với \(y\ne0\)
\(\Rightarrow\sqrt{\frac{x}{y}+1}+\sqrt{\frac{x}{y}-1}=2\)
\(\Rightarrow\frac{x}{y}+\sqrt{\left(\frac{x}{y}\right)^2-1}=2\)
\(\Rightarrow\sqrt{\left(\frac{x}{y}\right)^2-1}=2-\frac{x}{y}\) \(\left(\frac{x}{y}\le2\right)\)
\(\Rightarrow\left(\frac{x}{y}\right)^2-1=4-\frac{4x}{y}+\left(\frac{x}{y}\right)^2\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\Rightarrow x=\frac{5y}{4}\)
Thay vào pt dưới:
\(\frac{5y}{4}\sqrt{2y}-y\sqrt{\frac{5y}{4}-1}=\frac{y}{2}\)
\(\Leftrightarrow5\sqrt{2y}=2\sqrt{5y-4}+2\)
\(\Leftrightarrow50y=4\left(5y-4\right)+4+8\sqrt{5y-4}\)
\(\Leftrightarrow15y+6=4\sqrt{5y-4}\)
\(\Leftrightarrow9y^2+4y+4=0\) (vn)
Vậy pt có nghiệm duy nhất \(x=y=0\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
\(x\sqrt{x}+y\sqrt{y}+2x\sqrt{y}+2y\sqrt{x}\)
\(=\left(\sqrt{x^3}+\sqrt{y^3}\right)+\left(2x\sqrt{y}+2y\sqrt{x}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)+2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)\)