Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
\(\dfrac{\sqrt{xy^3}\cdot\sqrt{x^2-y^2}}{\sqrt{\left(x+y\right)\left(x^2y^3-xy^4\right)}}\)
\(=\dfrac{\sqrt{xy^3}\cdot\sqrt{\left(x+y\right)\left(x-y\right)}}{\sqrt{\left(x+y\right)\cdot xy^3\left(x-y\right)}}\)
\(=\dfrac{\sqrt{xy^3}\cdot\sqrt{x+y}\cdot\sqrt{x-y}}{\sqrt{x+y}\cdot\sqrt{xy^3}\cdot\sqrt{x-y}}\)
\(=1\)
a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
1) ta có : \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow P=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(\Leftrightarrow P=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
2) ta có : \(B=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}:\left(\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(B=\dfrac{\sqrt{4+2\sqrt{3}}}{2\sqrt{2}}:\left(\dfrac{\sqrt{3}\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}-\dfrac{4}{2\sqrt{6}}+\dfrac{\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)
\(B=\dfrac{\sqrt{3}+1}{2\sqrt{2}}:\left(\dfrac{\sqrt{3}\sqrt{4+2\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}{2\sqrt{6}}\right)\)
\(B=\dfrac{\sqrt{3}+1}{2\sqrt{2}}:\left(\dfrac{\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}-4}{2\sqrt{6}}\right)\)
\(B=\dfrac{\sqrt{3}+1}{2\sqrt{2}}:\left(\dfrac{\left(\sqrt{3}+1\right)^2-4}{2\sqrt{6}}\right)\)
\(B=\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}:\left(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+3\right)}{2\sqrt{6}}\right)\)
\(B=\dfrac{\sqrt{3}+1}{2\sqrt{2}}.\dfrac{2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\sqrt{3}}=\dfrac{1}{\sqrt{2}\left(\sqrt{3}-1\right)}=\dfrac{1}{\sqrt{6}-\sqrt{2}}\)
\(\Leftrightarrow B=\dfrac{\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
\(a.\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)=\dfrac{x+1+\sqrt{x}}{x\sqrt{x}-1}.\dfrac{x\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
\(b.ĐK:x>2\) ( thường là những bài rút gọn sẽ kèm theo ĐK nhé , mình thêm như vậy , nếu không bạn chia TH ra )
\(\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}=\dfrac{\sqrt{x-1}-1+\sqrt{x-1}+1}{1-\dfrac{1}{x}}=\dfrac{2\sqrt{x-1}}{1-\dfrac{1}{x}}\)
\(c.\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=1\)
\(d.Tuong-tự\)
bạnn giải giúp mik lun câu d lun nha?!:)))))cảm ơn nhiw!:))))))