Tìm x,y thuộc N:
a) x.y=x+y
b) x.y=x-y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x^2+3xy+\dfrac{9y^2}{4}=-\dfrac{3y^2}{4}+3y\)
\(\Leftrightarrow-\dfrac{3y^2}{4}+3y=\left(x+\dfrac{3y}{2}\right)^2\ge0\)
\(\Rightarrow-\dfrac{3y^2}{4}+3y\ge0\)
\(\Rightarrow3-\dfrac{3}{4}\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow-2\le y-2\le2\)
\(\Rightarrow0\le y\le4\)
\(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu:
Với \(y=0\Rightarrow x^2=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Với \(y=2\Rightarrow x^2+6x+6=0\) ko có nghiệm nguyên ((loại)
Với \(y=3\Rightarrow x^2+9x+18=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=-6\end{matrix}\right.\)
Với \(y=4\Rightarrow x^2+12x+36=0\Rightarrow x=-6\)
b. Kiểm tra lại đề, đề bài đúng như thế này thì không giải được (có vô số nghiệm)
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
kho....................wa....................troi.....................thi....................lanh.....................tich.....................ung..........................ho...................minh........................cho.....................do.....................lanh..................hu..................hu...............lanh..................wa........................ret..................wa
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)
Bài giải
\(xy=x-y\text{ }\Rightarrow\text{ }x=xy+y=y\left(x+1\right)\)
Suy ra : \(x\text{ : }y=y\left(x+1\right)\text{ : }y=x+1\text{ ( Do y}\ne0\text{ ) }^{\left(1\right)}\)
Theo đề ra : \(x-y=xy=x\text{ : }y\) \(\Leftrightarrow\text{ }x-y=xy=x\text{ : }y=x+1\)
\(x-y=x+1\)
\(y=x-\left(x+1\right)\)
\(y=x-x-1\)
\(y=0-1\)
\(y=-1\)
Thay \(y=-1\) vào \(^{\left(1\right)}\) ta được :
\(x\text{ : }y=x\text{ : }\left(-1\right)=x+1\)
\(x=\left(x+1\right)\left(-1\right)\)
\(x=-x+\left(-1\right)\)
\(x+x=-1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}\) , \(y=1\)
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
\(a;xy=x+y\)
\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Ta lập bẳng sau:
\(b;xy=x-y\)
\(\Leftrightarrow x\left(y-1\right)+y-1=-1\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=-1\)
Ta lập bảng sau:
a)Ta có:
x+y=xy
⇔ x+y-xy = 0
⇔ (x-xy)+y -1 = -1
⇔ x(1-y)-(1-y)=-1
⇔ (1-y)(x-1)=-1
⇔ (1-y) và (x-1) thuộc ước của -1
⇔ 1-y = 1 và x-1=-1
hoặc 1-y=-1 và x-1 =1
⇔ y=0 và x bằng 0
hoặc y =2 va x=2
vậy có 2 cặp x,y thỏa mãn là(0;0) và (2;2)
b)
Vì x.y=x−y
⇒x.y+2x+y=x−y+2x+y
⇒⇒ x−y+2x+y=1
⇔(x+2x)+(−y+y)=1
⇔3x+0=1⇔3x+0=1
⇒3x=1
⇒x=13
Thay x=1/3 ta có:
1/3.y+2.1/3+y=1
⇔(1/3.y+y)+2.1/3=1
⇔y(1/3+1)+2/3=1
⇔y.4/3+2/3=1
⇒4y/3=1−2/3
⇒4y/3=1/3
⇒4y=1
⇒y=1/4
Vậy x=1/3 và y=1/4
Chúc bạn hc giỏi
tk cho mik nha
thanks nhìu!!