Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012
= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012
= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012
= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012
= 1013 - 3.1012 + 3.101 + 2012
= 1002013
\(\text{a) Ta có:}xy=1\Rightarrow\hept{\begin{cases}2xy=2\\-2xy=-2\end{cases}}\)
\(\text{Ta lại có: }x^2+y^2=2\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=2+2=4\\x^2+y^2-2xy=2-2=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=4\\\left(x-y\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=\pm2\\x-y=0\end{cases}}}\)
\(\text{b) Ta có: }x+y=5\)
\(\Rightarrow\left(x+y\right)^2=25\)
\(\Rightarrow x^2+2xy+y^2=25\)
\(\Rightarrow x^2+4+y^2=25\)
\(\Rightarrow x^2+y^2=21\)
\(\text{b) Ta có: }x^2+y^2=21\)
\(\Rightarrow x^2-2xy+y^2=21-2xy\)
\(\Rightarrow\left(x-y\right)^2=21-4\)
\(\Rightarrow\left(x-y\right)^2=17\)
\(\Rightarrow x-y=\pm\sqrt{17}\)
Ta có HPT:
\(\left\{{}\begin{matrix}x-y=5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Thay x = -2, y = 3 vào, ta được:
A = (-2)3 - 33 - (-2)2 + 2.(-2).3 - 32
A = -8 - 27 - 4 + (-12) - 9
A = -60
Sửa:
Ta có HPT:
\(\left\{{}\begin{matrix}x-y=-5\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-y^2=-5y\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y^2=-6-\left(-5y\right)\\xy=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-3\end{matrix}\right.\)
Thay x = -3, y = 2 vào, ta được:
A = (-3)3 - 23 - (-3)2 + 2.(-3).2 - 22
A = -27 - 8 - 9 + (-12) - 4
A = -60
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
câu 1:
x2y+xy2-x-y
=(x2y-x)+(xy2y)
=x(xy-1)+y(xy-1)
=(x+y)(xy-1)
Câu 2:sai đề
Câu 3:
ax2+ay-bx2-by
=(ax2+ay)-(bx2+by)
=a(x2+y)-b(x2+y)
=(a-b)(x2+y)
Câu 4:
x(x+1)2+x(x-5)-5(x+1)2
=(x+1)2(x-5)+x(x-5)
=(x+5)[(x+1)2+x]
=(x+5)(x2+3x+1)
Câu 5:
3x2-12y2
=3(x2-4y2)
=3[(x)2-(2y)2]
=3(x-2y)(x+2y)
Câu 6:
5xy2-10xyz+5xz2
=5x(y2-2yz+z2)
=5(z-y)2
Gọi x,y là nghiệm của phương trình:
\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)
\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)
a)\(x^2+y^2=1^2+2^2=5\)
b)\(x^3+y^3=1^3+2^3=9\)
c)\(x^4+y^4=1^4+2^4=17\)
d)\(x^5+y^5=1^5+2^5=33\)
e)\(x^6+y^6=1^6+2^6=65\)
a.
\(\Leftrightarrow x^2+3xy+\dfrac{9y^2}{4}=-\dfrac{3y^2}{4}+3y\)
\(\Leftrightarrow-\dfrac{3y^2}{4}+3y=\left(x+\dfrac{3y}{2}\right)^2\ge0\)
\(\Rightarrow-\dfrac{3y^2}{4}+3y\ge0\)
\(\Rightarrow3-\dfrac{3}{4}\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(y-2\right)^2\le4\)
\(\Rightarrow-2\le y-2\le2\)
\(\Rightarrow0\le y\le4\)
\(\Rightarrow y=\left\{0;1;2;3;4\right\}\)
Lần lượt thế vào pt ban đầu:
Với \(y=0\Rightarrow x^2=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x^2+3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
Với \(y=2\Rightarrow x^2+6x+6=0\) ko có nghiệm nguyên ((loại)
Với \(y=3\Rightarrow x^2+9x+18=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=-6\end{matrix}\right.\)
Với \(y=4\Rightarrow x^2+12x+36=0\Rightarrow x=-6\)
b. Kiểm tra lại đề, đề bài đúng như thế này thì không giải được (có vô số nghiệm)
em cảm ơn