K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

A B C D

Cm: a) Xét t/giác ABD và t/giác ACD

có: AB = AC (Gt)

\(\widehat{BAD}=\widehat{CAD}\) (gt)

  AD : chung

=> t/giác ABD = t/giác ACD (c.g.c)

b) ta có: t/giác ABD = t/giác ACD (cmt)

=> \(\widehat{B}=\widehat{C}\) (2 góc t/ứng)

25 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\Delta ABD=\Delta ACD\Rightarrow\widehat{B}=\widehat{C}\)

25 tháng 12 2021

Cm: a) Xét t/giác ABD và t/giác ACD

có: AB = AC (Gt)

ˆBAD=ˆCADBAD^=CAD^ (gt)

  AD : chung

=> t/giác ABD = t/giác ACD (c.g.c)

b) ta có: t/giác ABD = t/giác ACD (cmt)

=> ˆB=ˆCB^=C^ (2 góc t/ứng)

thế nha

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\) 

AD chung

Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

17 tháng 11 2016

A B C D

Vì AD là phân giác của góc BAC nên \(BAD=CAD=\frac{BAC}{2}\)

Xét Δ CAD và Δ BAD có:

AC = AB (gt)

CAD = BAD (cmt)

AD là cạnh chung

Do đó, Δ CAD = Δ BAD (c.g.c)

=> ADC = ADB (2 góc tương ứng)

Mà ADC + ADB = 180o (kề bù) nên ADC = ADB = 90o

=> \(AD\perp BC\left(đpcm\right)\)

15 tháng 12 2021

a) chứng minh: tam giác ABD= tam giác ACD xét tam giác ABD và tam giác ACD có: AB=AC( giả thuyết) AD: cạnh chung Góc BDA=Góc ADC = 90 độ suy ra: tam giác ABD = tam giác ACD (c.g.c)

15 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}\widehat{IAD}=\widehat{CAD}\\\widehat{DIA}=\widehat{DKC}=90^0\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta AID=\Delta AKD\left(ch-gn\right)\\ \Rightarrow DI=DK;\widehat{IDA}=\widehat{KDA}\\ \text{Mà }\widehat{ADB}=\widehat{ADC}\\ \Rightarrow\widehat{ADB}-\widehat{IDA}=\widehat{ADC}-\widehat{KDA}\\ \Rightarrow\widehat{IDB}=\widehat{KDC}\\ c,AI=AK\\ \Rightarrow\Delta AIK\text{ cân tại }A\\ \Rightarrow\widehat{AIK}=\dfrac{180^0-\widehat{A}}{2}\\ \Delta ABC\text{ cân tại A}\\ \Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{AIK}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên IK//BC

a: Xét ΔABC cân tại A có AD là đường phân giác ứng với cạnh đáy BC

nên AD là đường trung trực ứng với cạnh BC

b: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

\(\widehat{MAD}=\widehat{NAD}\)

Do đó: ΔAMD=ΔAND

Suy ra: AM=AN

Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

a: Xét ΔABD và ΔACD có 
AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

mà d//BC

nên AD⊥d

19 tháng 2 2022

a) Xét ΔΔABD và ΔΔACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

⇒Δ⇒ΔABD = ΔΔACD (c.c.c)

b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)

\(\widehat{BAD}\)=\(\widehat{CAD}\)  (2gocs tương ứng )

 AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: ΔΔABD = ΔΔACD (theo ý a)

⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )

mà \(\widehat{ADB}\)  +  \(\widehat{ADC}\)=18001800( 2 góc kề bù ) 

\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900

⇒ AD ⊥ BC

Lại có: d // BC (gt)   AD  d

27 tháng 2 2021
Bn tham khảo nhé !!!
27 tháng 2 2021

DN\(\perp\)BC tại N,sao bài làm của Tâm An lại ghi là E ?