K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

a) chứng minh: tam giác ABD= tam giác ACD xét tam giác ABD và tam giác ACD có: AB=AC( giả thuyết) AD: cạnh chung Góc BDA=Góc ADC = 90 độ suy ra: tam giác ABD = tam giác ACD (c.g.c)

15 tháng 12 2021

\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAD}=\widehat{CAD}\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}\widehat{IAD}=\widehat{CAD}\\\widehat{DIA}=\widehat{DKC}=90^0\\AD\text{ chung}\end{matrix}\right.\Rightarrow\Delta AID=\Delta AKD\left(ch-gn\right)\\ \Rightarrow DI=DK;\widehat{IDA}=\widehat{KDA}\\ \text{Mà }\widehat{ADB}=\widehat{ADC}\\ \Rightarrow\widehat{ADB}-\widehat{IDA}=\widehat{ADC}-\widehat{KDA}\\ \Rightarrow\widehat{IDB}=\widehat{KDC}\\ c,AI=AK\\ \Rightarrow\Delta AIK\text{ cân tại }A\\ \Rightarrow\widehat{AIK}=\dfrac{180^0-\widehat{A}}{2}\\ \Delta ABC\text{ cân tại A}\\ \Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\\ \Rightarrow\widehat{AIK}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên IK//BC

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC

=>ΔDKC cân tại D

26 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

a: Xét ΔABD và ΔACD có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>góc ADB=góc ADC=90 độ

=>AD vuông góc BC

c: Xét tứ giác ADBE có

AD//BE

AD=BE

=>ADBE là hình bình hành

=>AB và ED cắt nhau tại trung điểm của mỗi đường

=>F,E,D thẳng hàng

22 tháng 1 2019

MINH CO BAI NAY BANJ GUP MK DC KO

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

a.

Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:

A1 = A2 (AI là tia phân giác của BAC)

AI là cạnh chung

=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> Tam giác IHK cân tại I

b.

AH = AK (Tam giác HAI = Tam giác KAI)

=> Tam giác AHK cân tại A

=> AHK = \(\frac{180-HAK}{2}\) 

mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)

=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị

=> HK // BC

c. Gọi M là giao điểm của AI và HK

Xét tam giác AHM và tam giác AKM có:

AH = AK (Tam giác AHI = Tam giác AKI)

A1 = A2 (AI là tia phân giác của BAC)

AM là cạnh chung

=> Tam giác AHM = Tam giác AKM (c.g.c)

=> AMH = AMK (2 góc tương ứng)

mà AMH + AMK = 180 (2 góc kề bù)

=> AMH = AMK = 90

=> AI _I_ HK

18 tháng 4 2016

a)tự cm tam giác AHI=AKI=> HI=KI=>TAM GIÁC IHK CÂN

b) dễ wa bạn có thể cm