Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
a: Xét ΔADB và ΔADE có
AD chung
góc BAD=góc EAD
AB=AE
=>ΔADB=ΔADE
=>góc ABD=góc AED
b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có
AE=AB
góc AEF=góc ABC
=>ΔAEF=ΔABC
=>AC=AF
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
mà d//BC
nên AD⊥d
a) Xét ΔΔABD và ΔΔACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
⇒Δ⇒ΔABD = ΔΔACD (c.c.c)
b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒\(\widehat{BAD}\)=\(\widehat{CAD}\) (2gocs tương ứng )
⇒ AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )
mà \(\widehat{ADB}\) + \(\widehat{ADC}\)=18001800( 2 góc kề bù )
⇒\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900
⇒ AD ⊥ BC
Lại có: d // BC (gt) ⇒ AD ⊥ d
A)XÉT \(\Delta ABD\)VÀ\(\Delta HBD\)CÓ
\(\widehat{BAD}=\widehat{BHD}=90^o\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta HBD\)(CẠNH HUYỀN - GÓC NHỌN ) ( ĐPCM)
GỌI I LÀ GIAO ĐIỂM CỦA BD VÀ AH
XÉT \(\Delta ABI\)VÀ\(\Delta HBI\)CÓ
\(AB=BH\left(\Delta ABD=\Delta HBD\right)\)
\(\widehat{ABD}=\widehat{DBH}\left(GT\right)\)
BI LÀ CẠNH CHUNG
=>\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
\(\Rightarrow\widehat{AIB}=\widehat{HIB}\)( HAI GÓC TƯƠNG ỨNG)
MÀ HAI GÓC NÀY KỀ BÙ
\(\Rightarrow\widehat{AIB}=\widehat{HIB}=\frac{180^o}{2}=90^o\left(1\right)\)
mà\(\Delta ABI\)=\(\Delta HBI\)(C-G-C)
=> AI=HI( HAI CẠNH TƯƠNG ỨNG ) (2)
TỪ 1 VÀ 2 => BI LÀ ĐƯỜNG TRUNG TRỰC CỦA AH HAY BD LÀ ĐƯỜNG TRUNG TRỰC CỦA AH(ĐPCM)
B)
b)
Vì \(\Delta\)DBA =\(\Delta\) DBH ( cm ở câu a )
=) AD = DH
Xét\(\Delta\)DHC ( DHC = 90 ) có :
DC là cạnh huyền
\(\Rightarrow\) DC là cạnh lớn nhất
\(\Rightarrow DC>DH\)
mà DH = AD
\(\Rightarrow AD< DC\)
a, Xét △ABD vuông tại A và △HBD vuông tại H
Có: BD là cạnh chung
ABD = HBD (gt)
=> △ABD = △HBD (ch-gn)
=> AB = BH (2 cạnh tương ứng) => B thuộc đường trung trực của AH
và AD = HD (2 cạnh tương ứng) => D thuộc đường trung trực của AH
=> BD là đường trung trực của AH
b, Xét △HDC vuông tại H có: DC > DH (quan hệ giữa đường xiên và đường vuông góc)
=> DC > AD