giải √(2x+10) - ∣√3x-2 ∣= 0.x
Đáp án ít nhất 8 số mọi ngừi ạ :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\orbr{\begin{cases}x=0\\x=10\end{cases}}\)
b) \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)
a) (x - 12). 105 = 0
x-12= 0 : 105
x - 12 = 0
x = 0+ 12
x = 12
b) (47.(27 - x) = 94
27-x =94 : 47
27 - x = 2
x = 27 - 2
x = 25
c) 2x + 69 .2 = 69.5
2x = 69.5 - 69.2
2x = 69 . (5 - 2)
2x = 69.3
2x = 207
x = 207 : 2
x = 103,5
Vì 1 số tự nhiên nhân với 0 luôn luôn có kết quả bằng 0
7(x-2)=0
<=>x-2=0
x=0+2
x=2
=>vậy chọn đáp án C là đúng
7(x - 2) = 0
=> x - 2 = 0 ( vì 7 khác 0)
=> x = 2
Vậy chọn câu C
1.
\(DK:x\ge2\)
PT
\(\Leftrightarrow\left(2+x\right)\sqrt{x-2}-\left(x+2\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\sqrt{x-2}\left(1-\sqrt{x-2}\right)=0\)
Cho này thì ok ròi nhé
2.
\(DK:x\le\frac{5}{2}\)
Xet \(x\in\left[0;\frac{5}{2}\right]\)
PT
\(\Leftrightarrow x^2-4x=5-2x\)
\(\Leftrightarrow x^2-2x-5=0\)
Ta co:
\(\Delta^`=\left(-1\right)^2-1.\left(-5\right)=6>0\)
\(\Rightarrow\hept{\begin{cases}x_1=1+\sqrt{6}\left(l\right)\\x_2=1-\sqrt{6}\left(l\right)\end{cases}}\)
Xet \(x\le0\)
PT
\(4x-x^2=5-2x\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=5\left(l\right)\end{cases}}\)
Vay PT vo nghiem
TH1: \(m=-1\) thỏa mãn (dễ dàng kiểm tra các giá trị \(f\left(-1\right)>0\) ; \(f\left(0\right)< 0\) ; \(f\left(3\right)>0\) nên pt có ít nhất 2 nghiệm thuộc (-1;0) và (0;3)
TH2: \(m>-1\):
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^4\left[m\left(1-\dfrac{2}{x}\right)^2\left(1+\dfrac{9}{x}\right)+1-\dfrac{32}{x^4}\right]=+\infty.\left(m+1\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a\) đủ lớn sao cho \(f\left(a\right)>0\)
\(f\left(0\right)=-32< 0\Rightarrow f\left(a\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm dương
\(f\left(-9\right)=9^4-32>0\Rightarrow f\left(-9\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm âm thuộc \(\left(-9;0\right)\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 2 nghiệm
TH3: \(m< -1\) tương tự ta có: \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}=+\infty.\left(m+1\right)=-\infty\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(x=a>0\) đủ lớn và \(x=b< 0\) đủ nhỏ sao cho \(\left\{{}\begin{matrix}f\left(a\right)< 0\\f\left(b\right)< 0\end{matrix}\right.\)
Lại có \(f\left(-9\right)=9^4-32>0\) \(\Rightarrow\left\{{}\begin{matrix}f\left(-9\right).f\left(a\right)< 0\\f\left(-9\right).f\left(b\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Pt luôn có ít nhất 2 nghiệm thuộc \(\left(-\infty;-9\right)\) và \(\left(-9;+\infty\right)\)
Vậy pt luôn có ít nhất 2 nghiệm với mọi m
a: |2x|=x-4
TH1: x>=0
=>2x=x-4
=>x=-4(loại)
TH2: x<0
=>-2x=x-4
=>-3x=-4
=>x=4/3(loại)
b: 7-|2x+1|=x
=>|2x+1|=7-x
TH1: x>=-1/2
=>2x+1=7-x
=>3x=6
=>x=2(nhận)
TH2: x<-1/2
=>2x+1=x-7
=>x=-8(nhận)
\(\left|2x\right|=x-4\)
\(TH_1:x\ge0\\ 2x=x-4\Leftrightarrow2x-x=-4\Leftrightarrow x=-4\left(ktm\right)\)
\(TH_2:x< 0\\\Leftrightarrow-2x=x-4\Leftrightarrow-2x-x=-4\Leftrightarrow-3x=-4\Leftrightarrow x=\dfrac{4}{3}\left(ktm\right) \)
Vậy pt vô nghiệm.
\(7-\left|2x+1\right|=x\\ \Leftrightarrow\left|2x+1\right|=7-x\)
\(TH_1:x\ge-\dfrac{1}{2}\)
\(2x+1=7-x\Leftrightarrow2x+x=7-1\Leftrightarrow3x=6\Leftrightarrow x=2\left(tm\right)\)
\(TH_2:x< -\dfrac{1}{2}\\ -2x-1=7-x\Leftrightarrow-2x+x=7+1\Leftrightarrow-x=8\Leftrightarrow x=-8\left(tm\right)\)
Vậy \(S=\left\{-8;2\right\}\)
Bạn ơi chung căn (3x-2) hãy căn (3x) - 2