K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Ta có: \(A=4x^2+12x+9-1\)

   <=> \(A=\left(2x+3\right)^2-1\)

   <=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)

   <=> \(A=\left(2x+2\right)\left(2x+4\right)\)

   <=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)

   Vậy Amin = 8 khi x=0 

25 tháng 4 2019

trần gia bảo bái phục bái phục!

                    Lời giải

Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)

Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)

\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)

\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))

Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2

Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2

27 tháng 6 2016

Ta dùng bđt Cô si nhé :) 

Do x > 1 nên x + 1 > 0. Từ đó ta có: 

\(A=4\left(x+1\right)+\frac{25}{x+1}-4\)

Áp dụng bđt Cosi ta có : \(4\left(x+1\right)+\frac{25}{x+1}\ge2\sqrt{\frac{4\left(x+1\right).25}{\left(x+1\right)}}=20\Rightarrow A\ge20-4=16\)

Vậy GTNN của A là 16, khi x = 1,5.

12 tháng 8 2016

A=5x^2+9y^2-4x-12xy+9 
= x^2 - 4x + 4 + 9y^2 - 12xy + 4x^2 + 5 
= (x-2)^2 + (3y - 2x)^2 +5 >= 5 
Dấu "=" xẩy ra khi x-2=0 và 3y-2x=0 
hay x = 2 và y = 4/3 
Vậy GTNN của A là 5 khi x = 2 và y = 4/3

18 tháng 7 2017

\(D=-x^2-4x\)

\(=-\left(x^2+4x\right)\)

\(=-\left(x^2+2.x.2+2^2-4\right)\)

\(=-\left[\left(x+2\right)^2-4\right]\)

\(=-\left(x+2\right)^2+4\)

\(-\left(x+2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+2\right)^2+4\le4\forall x\)

\(\Rightarrow D\le4\forall Dx\)

Dấu ''=" xảy ra khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)

Vậy \(MAX_D=4\) khi \(x=-2.\)

18 tháng 7 2017

Thank You !^^

5 tháng 11 2017

tim gtnn cua x^2+4x+2

GIẢI:

\(x^2+4x+2\)

\(=\left(x^2+2.x.2+2^2\right)-2\)

\(=\left(x+2\right)^2-2\)

Nhận xét : \(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2-2>0\) với mọi x

Vậy GTNN của biểu thức là -2 đạt được khi :

\(\left(x+2\right)^2=0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

11 tháng 7 2018

Gọi biểu thức trên là A.

\(A=x^2-4x+9\)

\(\Rightarrow A=x^2-4x+2+7\)

\(\Rightarrow A=\left(x-2\right)^2+7\)

Nhận xét: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+7\ge7\forall x\)

dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy \(minA=7\Leftrightarrow x=2\) 

11 tháng 7 2018

\(x^2-4x+9=x^2-2.x.2+2^2+5=\left(x-2\right)^2+5\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+5\ge5\)

Dấu "=" xảy ra khi :

\(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy ...

NV
9 tháng 4 2019

GTLN và GTNN của biểu thức này đều ko tồn tại

D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)

D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))