K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Gọi biểu thức trên là A.

\(A=x^2-4x+9\)

\(\Rightarrow A=x^2-4x+2+7\)

\(\Rightarrow A=\left(x-2\right)^2+7\)

Nhận xét: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+7\ge7\forall x\)

dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy \(minA=7\Leftrightarrow x=2\) 

11 tháng 7 2018

\(x^2-4x+9=x^2-2.x.2+2^2+5=\left(x-2\right)^2+5\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+5\ge5\)

Dấu "=" xảy ra khi :

\(\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy ...

25 tháng 4 2019

Ta có: \(A=4x^2+12x+9-1\)

   <=> \(A=\left(2x+3\right)^2-1\)

   <=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)

   <=> \(A=\left(2x+2\right)\left(2x+4\right)\)

   <=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)

   Vậy Amin = 8 khi x=0 

25 tháng 4 2019

trần gia bảo bái phục bái phục!

                    Lời giải

Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)

Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)

\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)

\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))

Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2

Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2

6 tháng 3 2016

a ) Vì | x + 1 | ≥ 0 ∀ x ∈ N 

Để A = | x + 1 | + 1,7 min <=> x + 1 = 0 => x = - 1

Vậy min A = 1,7 <=> x = - 1

b ) Vì B = | x - 2/3 | ≥ 0 ∀ x ∈ N 

Để | x -2/3 | + 3/7 min <=> x - 2/3 = 0 => x = 2/3

Vậy min B = 3/7 <=> x = 2/3

23 tháng 10 2018

\(A=|x+3|+|x-9|=|x+3|+|9-x|\ge|x+3+9-x|=12.\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+3\right)\left(9-x\right)\ge0\)

\(\Leftrightarrow-3\le x\le9\)

Vậy: Amin=12\(\Leftrightarrow-3\le x\le9\)

6 tháng 3 2016

a) |x+1|>/0

dấu "=" xảy ra khi x=-1

vậy Min A=1,7 khi x=-1

b)|x-2/3|>/0

dấu"=" xảy ra khi x=2/3

vậy Min A=3/7 khi x=2/3

c) bạn viết đề câu c rõ chút đc ko

6 tháng 3 2016

a, Amin = 1,7 tại x = -1

b, Bmin = 3,7 tại x = \(\frac{2}{3}\)

6 tháng 5 2018

M(x) = -4x^2 - 2x + 7 = -9

<=> -4x^2 - 2x + 16= 0

<=> x = \(\dfrac{-1\pm\sqrt{65}}{4}\)

6 tháng 5 2018

M(x) = -4x^2 - 2x + 7 = -9

=> -4x^2 - 2x + 16= 0

=> x = \(\dfrac{-1\text{±}\sqrt{65}}{4}\)

Ta có : \(\left|x-3\right|\ge0\)

=> \(2\left|x-3\right|\ge0\)

Nên : \(A=9-2\left|x-3\right|\le9\)

Vậy \(A_{max}=9\) khi x = 3 

3 tháng 7 2018

\(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(8-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x\le8\end{cases}\Rightarrow}2\le x\le8}\)

TH2: \(\hept{\begin{cases}x-2\le0\\8-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le2\\x\ge8\end{cases}}\left(loại\right)}\)

Vậy Bmin = 6 khi 2 <= x <= 8