Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN của A là 2/3
GTNN của A là số ko tìm đc hay nói là lớn hơn -1
\(x^2\)luôn cho ra kết là lớn hơn 0. Mà \(x+1< x^2\)Cứ thế cho ra số lớn hơn -1. Đơn giản vì \(x+1< x^2+x+1\)
+) GTNN
Ta có :\(3A=\frac{3x+3}{x^2+x+1}=\frac{-x^2-x-1+x^2+4x+4}{x^2+x+1}=\frac{-\left(x^2+x+1\right)+\left(x+2\right)^2}{x^2+x+1}\)
\(=-1+\frac{\left(x+1\right)^2}{x^2+x+1}\ge-1\) \(\Rightarrow A\ge-\frac{1}{3}\)Đạt GTNN là \(-\frac{1}{3}\)
Đạt được khi \(\frac{\left(x+1\right)^2}{x^2+x+1}=0\Rightarrow x=-1\)
+) GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{x^2+x+1-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\le1\)Đạt GTLN là 1
Đạt được khi \(\frac{x^2}{x^2+x+1}=0\Rightarrow x=0\)
P + 1 = (x^2+1+4x+3)/x^2+1 = (x^2+4x+4)/x^2+1 = (x+2)^2/x^2+1 >= 0
=> P >= -1
Dấu "=" xảy ra <=> x+2 = 0 <=> x =-2
Vậy Min P = -1 <=> x = -2
Lại có : 4 - P = (4x^2+4-4x-3)/x^2+1 = (4x^2-4x+1)/x^2+1 = (2x-1)^2/x^2+1 >=0
=> P <= 4
Dấu "=" xảy ra <=> 2x-1 = 0 <=> x= 1/2
Vậy Max P = 4 <=> x=1/2
Câu trả lời hay nhất: Biểu diễn P:
P = x^2 - 4x + 5
= x^2 - 4x + 4 + 1
= (x^2 - 4x + 4) + 1
= (x - 2)^2 + 1 >= 1
Vậy giá trị nhỏ nhất đạt được của P = 1 khi:
(x - 2)^2 = 0
<=> x - 2 = 0
<=> x = 2
Đặt \(A=x^2-4x+3\)
\(=x^2-2.x.2+4-1\)
\(=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy MIN A=-1 \(\Leftrightarrow x=2\)
= \(x^2-4x+4-1\)
= \(\left(x-2\right)^2-1\ge-1\)
GTNN của biểu thức là -1 khi x=2
\(J=\frac{2010}{4x+20\sqrt{x}+30}\)
\(=\frac{2010}{\left(2\sqrt{x}\right)^2+2.2\sqrt{x}.5+25+5}\)
\(=\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
\(A_{max}\Leftrightarrow\frac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)lớn nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2+5\)nhỏ nhất
\(\Rightarrow\left(2\sqrt{x}+5\right)^2\)nhỏ nhất
Mà \(2\sqrt{x}+5\ge5\Rightarrow2\sqrt{x}+5=5\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\)
Với x = 0 \(\Rightarrow J_{max}=\frac{2010}{4.0+20\sqrt{0}+30}=\frac{2010}{30}=67\)
Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)
\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)
\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)
\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)
\(P=\frac{1}{5xy}+\frac{xy}{20}+\frac{5}{x+2y+5}+\frac{x+2y+5}{20}-\frac{xy}{20}-\frac{x+2y+5}{20}\)
\(\ge2\sqrt{\frac{1}{5xy}.\frac{xy}{20}}+2.\sqrt{\frac{5}{x+2y+5}.\frac{x+2y+5}{20}}-\frac{x\left(3-x\right)+x+2\left(3-x\right)+5}{20}\)
\(=2.\frac{1}{10}+2.\frac{1}{2}-\frac{-x^2+2x+11}{20}\)
\(=\frac{x^2-2x+1}{20}+\frac{3}{5}=\frac{\left(x-1\right)^2}{20}+\frac{3}{5}\ge\frac{3}{5}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{5xy}=\frac{xy}{20}\\\frac{5}{x+2y+5}=\frac{x+2y+5}{20}\\\left(x-1\right)^2=0,x+y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\x+2y+5=10\\x=1,x+y=3\end{cases}\Leftrightarrow}x=1,y=2\)
Vậy min P=3/5 khi x=1, y=2
Em co cach nay ngan gon hon, cac ban co the tham khao
P=\(\frac{1}{5xy}\) + \(\frac{5}{x+2y+5}\)=\(\frac{1}{5xy}\)+\(\frac{25}{5\left(x+2y+5\right)}\)
= \(\frac{1^2}{5xy}\)+\(\frac{5^2}{5\left(x+2y+5\right)}\)
\(\geq\) \(\frac{\left(1+5\right)^{^2}}{5xy+5\left(x+2y+5\right)}\)
=\(\frac{36}{5\left(xy+x+2y+2+3\right)}\)
=\(\frac{36}{5\left(\left(x+2\right)\left(y+1\right)+3\right)}\)
=\(\frac{36}{5\left(\frac{\left(x+y+3\right)^2}{4}+3\right)}\) (do \((x+2)(y+1) \leq \frac {(x+y+3)^2}{4}\) )
=\(\frac{36}{5\left(\frac{\left(3+3\right)^2}{4}+3\right)}\) (do \(x+y \leq 3\) )
=\(\frac{3}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{5xy}=\frac{1}{x+2y+5}\\x+2=y+1\\x+y=3\end{cases}}\Leftrightarrow x=2,y=1\)
Vậy GTNN của P là 3/5 khi và chỉ khi x=2,y=1
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))