Đưa về hằng đẳng thức các biểu thức sau:
a) 19+8√3
b)11-4√6
c)9-4√2
d)21+6√10
e)23+6√10
f)49-20√6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7/9 và 9/11
b, 1/5, 3/10 và 4/15
c, 3/7, 4/9 và 8/21
d, 7/6 và 6/10
e, 19/10 và 8/9
g, 19/24 và 3/8
Nhìn phân số ở đây cho dễ
a: 7/9=77/99
9/11=63/99
b: 1/5=6/30
3/10=9/30
4/15=8/30
c: 3/7=27/63
4/9=28/63
8/21=24/63
d: 7/6=35/30
6/10=18/30
e: 19/10=171/90
8/9=80/90
g: 19/24=19/24
3/8=9/24
a, \(9x^4-12x^5+4x^6=x^4\left(9-12x+4x^2\right)=x^4\left(3-2x\right)^2\)
b, \(x^{10}-4x^8+4x^6=x^6\left(x^4-4x^2+4\right)=x^6\left(x^2-2\right)^2\)
c, \(9x^6-12x^7+4x^8=x^6\left(9-12x+4x^2\right)=x^6\left(3-2x\right)^2\)
________________________________________________________________---------------------------------------------------------------------Tích cho mk nha-----------------------------------------------------------------------------______________________________________________
a, A = \(\dfrac{3^{10}\times10+3^{10}\times6}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times\left(10+6\right)}{3^9\times2^4}\)
A = \(\dfrac{3^{10}\times16}{3^9\times16}\)
A = 3
c, C = \(\dfrac{36^{10}\times25^{15}}{30^8}\)
C = \(\dfrac{\left(6^2\right)^{10}.\left(5^2\right)^{15}}{30^8}\)
C = \(\dfrac{6^{20}.5^{30}}{6^8.5^8}\)
C = 612.522
a) Số phần tử:
\(\left(9-2\right):1+1=8\) (phần tử)
b) Số phần tử:
\(\left(20-2\right):2+1=10\) (phẩn tử)
c) Số phần tử:
\(\left(25-1\right):3+1=9\) (phần tử)
d) Số phần tử:
\(\left(104-2\right):2+1=52\) (phần tử)
e) Số phần tử:
\(\left(470-5\right):5+1=94\) (phần tử)
f) Số phần tử:
\(\left(500-10\right):10+1=50\) (phần tử)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
a) \(19+8\sqrt{3}=3+2\sqrt{3}\cdot4+16=\left(\sqrt{3}+4\right)^2\)
b) \(11-4\sqrt{6}=3-2\sqrt{3}\cdot2\sqrt{2}+8=\left(\sqrt{3}-2\sqrt{2}\right)^2\)
c) \(9-4\sqrt{2}=8-2\cdot2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)
d) \(21+6\sqrt{10}=18+2\cdot3\sqrt{2}\cdot\sqrt{5}+5-2=\left(3\sqrt{2}+\sqrt{5}\right)^2-\left(\sqrt{2}\right)^2\)
e) \(23+6\sqrt{10}=18+2\cdot3\sqrt{2}\cdot\sqrt{5}+5=\left(3\sqrt{2}+\sqrt{5}\right)^2\)
f) \(49-20\sqrt{6}=\left(5\sqrt{2}\right)^2-2\cdot5\sqrt{2}\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-13=\left(5\sqrt{2}-2\sqrt{3}\right)^2-\left(\sqrt{13}\right)^2\)