K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

Ta có ab-a-b+1=(a-1)(b-1)

Vì a,b là bình phương của 2 số lẻ liên tiếp nên ta có \(a=\left(2k+1\right)^2b=\left(2k+3\right)^2\)

\(\Rightarrow ab-a-b+1=2k\left(2k+2\right)^2\left(2k+4\right)\)

\(=16k\left(k+1\right)^2\left(k+2\right)⋮16\)

Vì \(k\left(k+1\right)^2\left(k+2\right)⋮3\)mà (3,16)=1 nên

\(ab-a-b+1⋮3.16=48\)

10 tháng 3 2021

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)

19 tháng 7 2021

bài 2 :

   x3+7y=y3+7x

   x3-y3-7x+7x=0

   (x-y)(x2+xy+y2)-7(x-y)=0

   (x-y)(x2+xy+y2-7)=0

    \(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)

   x2+xy+y2=7 (*)

   Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)

15 tháng 5 2019

Chứng minh gì z bạn?????

11 tháng 3 2019

Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link này nhé!

11 tháng 3 2019

Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link này nhé!

3 tháng 4 2015

 

 

a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.

 

Ta đặt: a=(2k-1)2;b=(2k+1)2.

 

=>(m-1)=4k(k-1)     (k thuộc Z)

 

    (n-1)=4k(k+1).

 

=>(m-1)(n-1)=16k2(k-1)(k+1)

 

Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).

 

 Do k(k-1)và k(k+1) chia hết cho 2

 

nên suy ra: k2(k+1)(k-1) chia hết cho 12.

 

=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.