K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)

\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)

\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp

Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48

Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2

\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)

Ta thấy \(B⋮2;B⋮8\)

(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)

\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)

\(\Rightarrow A⋮48\)

15 tháng 5 2019

Chứng minh gì z bạn?????

12 tháng 7 2021

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

ASDWE RHTYJNHWSAVFGB

11 tháng 10 2017

A)đè ra ta có 

2x+1+2x+3:hết 4

=>4x+4:hết 4

=>tổng 2 số lẻ liên tiếp chia hết cho 4

13 tháng 6 2019

Ta có ab-a-b+1=(a-1)(b-1)

Vì a,b là bình phương của 2 số lẻ liên tiếp nên ta có \(a=\left(2k+1\right)^2b=\left(2k+3\right)^2\)

\(\Rightarrow ab-a-b+1=2k\left(2k+2\right)^2\left(2k+4\right)\)

\(=16k\left(k+1\right)^2\left(k+2\right)⋮16\)

Vì \(k\left(k+1\right)^2\left(k+2\right)⋮3\)mà (3,16)=1 nên

\(ab-a-b+1⋮3.16=48\)

7 tháng 11 2024

흘르럏스헣 허줖

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

5 tháng 4 2016

a) Goi :3 số tự nhiên liên tiếp la : n, n+1, n+2 
=> tổng : n+n+1+n+2 = 3n+3 = 3(n+1) chia hết cho 3 Vậy : tổng của ba số tự nhiên liên tiếp chia hết cho 3

b) Goi 2 so le lien tiep co dang 2k+1 va 2k+3

Gọi D là ước số chung của chúng.

Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D

Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D

Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ

.Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau!

 chúc bạn học tập tốt !!!

7 tháng 8 2020

a , b là bình phương của hai số  nguyên lẻ liên tiếp

=> a có dạng ( 2k - 1 )2 ( k thuộc Z )

=> b có dạng ( 2k + 1 )2 ( k thuộc Z )

Ta phân tích được ab - a - b + 1 = ( a - 1 )( b - 1 )

Thế vào ta được :

[ ( 2k - 1 )2 - 1 ][ ( 2k + 1 )2 - 1 ]

= [ 4k2 - 4k ][ 4k2 + 4k ]

= 16k4 - 16k2 

= 16( k - 1 )k2( k + 1 )

48 = 16.3

Ta có k - 1 , k , k + 1 là ba số liên tiếp => chia hết cho 3 

=> 16( k - 1 )k2( k + 1 ) chia hết cho 48 ( đpcm )