Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)
\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)
\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp
Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48
Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2
\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)
Ta thấy \(B⋮2;B⋮8\)
(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)
\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)
\(\Rightarrow A⋮48\)
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4.
Ta đặt: a=(2k-1)2;b=(2k+1)2.
=>(m-1)=4k(k-1) (k thuộc Z)
(n-1)=4k(k+1).
=>(m-1)(n-1)=16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho3 (3 số nguyên liên tiếp).
Do k(k-1)và k(k+1) chia hết cho 2
nên suy ra: k2(k+1)(k-1) chia hết cho 12.
=>(a-1)(b-1)=16k2(k+1)(k-1) chia hết cho 192 khi m,n là SCP lẻ liên tiếp.
Câu hỏi của Bảo Bình Đáng Yêu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo link này nhé!
Ta có ab-a-b+1=(a-1)(b-1)
Vì a,b là bình phương của 2 số lẻ liên tiếp nên ta có \(a=\left(2k+1\right)^2b=\left(2k+3\right)^2\)
\(\Rightarrow ab-a-b+1=2k\left(2k+2\right)^2\left(2k+4\right)\)
\(=16k\left(k+1\right)^2\left(k+2\right)⋮16\)
Vì \(k\left(k+1\right)^2\left(k+2\right)⋮3\)mà (3,16)=1 nên
\(ab-a-b+1⋮3.16=48\)