Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n và n+2 là 2 số lẻ liên tiếp\(\Rightarrow a=n^2\) và\(b=\left(n+2\right)^2\)
\(\Rightarrow A=n^2\left(n+2\right)^2-n^2-\left(n+2\right)^2+1\)
\(A=\left(n+2\right)^2\left(n^2-1\right)-\left(n^2-1\right)=\left(n^2-1\right)\left[\left(n+2\right)^2-1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left[\left(n+2\right)-1\right]\left[\left(n+2\right)+1\right]\)
\(A=\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Ta thấy \(\left(n-1\right)\left(n+1\right)\left(n+3\right)\) là tích của 3 số chẵn liên tiếp
Ta chứng minh bài toán phụ là tích của 3 số chẵn liên tiếp thì chia hết cho 48
Gọi 3 số chẵn liên tiếp lần lượt là 2k-2;2k;2k+2
\(\Rightarrow B=\left(2k-2\right)2k\left(2k+2\right)=2\left(k-1\right).2k.2\left(k+1\right)=8\left(k-1\right)k\left(k+1\right)\)
Ta thấy \(B⋮2;B⋮8\)
(k-1).k.(k+1) là 3 số tự nhiên liên tiếp nên tích chia hết cho 3 \(\Rightarrow B⋮3\)
\(\Rightarrow B⋮2.3.8\Rightarrow B⋮48\)
\(\Rightarrow A⋮48\)
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2
Nếu a,b ko cùng tính chẵn lẻ thì
ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2
Nếu a,b lẻ thì (a+b) chia hết cho 2
=>ab(a+b) chia hết cho 2
b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)
a) Xét 4 trường hợp :
TH1: a lẻ - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH2: a chẵn - b lẻ
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH3: a chẵn - b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
TH4: a lẻ - b lẻ
=> a + b chẵn
=> ab(a+b) chẵn
=> ab(a+b) chia hết cho 2
Vậy ta có đpcm
b) \(ab-ba=10a+b-10b-a\)
\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)
a,b lẻ nên suy ra: (a-1)(b-1) chia hết cho 4
Ta đặt: a = (2k-1)2 ; b = (2k+1)2
=> m - 1 = 4k(k-1) (k thuộc Z)
n - 1 = 4k(k+1)
=> (m-1)(m+1) = 16k2(k-1)(k+1)
Mà k(k-1)(k+1) chia hết cho 3 (3 số nguyên liên tiếp)
Do k(k-1) và k(k+1) chia hết cho 2
=> k2(k-1)(k+1) chia hết cho 12
=> (a-1)(a+1) = 16k2(k+1)(k-1) chia hết cho 192 khi m,n là số chính phương lẻ liên tiếp
a , b là bình phương của hai số nguyên lẻ liên tiếp
=> a có dạng ( 2k - 1 )2 ( k thuộc Z )
=> b có dạng ( 2k + 1 )2 ( k thuộc Z )
Ta phân tích được ab - a - b + 1 = ( a - 1 )( b - 1 )
Thế vào ta được :
[ ( 2k - 1 )2 - 1 ][ ( 2k + 1 )2 - 1 ]
= [ 4k2 - 4k ][ 4k2 + 4k ]
= 16k4 - 16k2
= 16( k - 1 )k2( k + 1 )
48 = 16.3
Ta có k - 1 , k , k + 1 là ba số liên tiếp => chia hết cho 3
=> 16( k - 1 )k2( k + 1 ) chia hết cho 48 ( đpcm )