Cho hình vuông ABCD và điểm H thuộc cạnh BC(H không trùng với B và C). Trên nửa mặt phẳng bờ là BC không chứa hình vuông ABCD, dựng hình vuông CHIK. a) Chứng mình DH vuông góc với BK. b) Gọi M là giao điểm của DH và BK, N là giao điểm của KH và BD. Chứng mình : DN.BD+KM.BK=DK^2. c) Chứng mình : BH/HC+DM/HM+KH/KN>6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a,b thì mình làm được còn câu c,d thì mình chưa làm ra. Chân thành xin lỗi
a) có \(\widehat{BDC}=45^0\)(ABCD là hình vuông, BD là đường chéo)
\(\widehat{DKN}\left(hay\widehat{DKH}\right)=45^0\)(CHIK là hình vuông và KH là đường chéo)
\(\Rightarrow\widehat{BDC}+\widehat{DKN}=45^0+45^0=90^0\)
\(\Rightarrow\Delta DKN\)vuông tại N
\(\Rightarrow KN\perp DN\)
mà \(BC\perp DK\)
KN và BC cắt nhau tại H
suy ra H là trực tâm của tam giác BDK
nên \(DH\perp BK\)
b) Xét \(\Delta DMB\&\Delta KNB\)
có \(\widehat{DMB}=\widehat{KNB}\)=900
\(\widehat{DBK}chung\)
\(\Rightarrow\Delta DMB\) \(\Delta KNB\)(g-g)
\(\Rightarrow\frac{MB}{NB}=\frac{BD}{BK}\)
từ tỉ số trên ta đễ chứng minh \(\Delta BMN\)\(\Delta BDK\)
cm tương tự ta có \(\Delta CMK\)\(\Delta BDK\)
\(\Rightarrow\Delta BMN\)\(\Delta CMK\)
\(\Rightarrow\widehat{BMN}=\widehat{CMK}\)
lại có \(\hept{\begin{cases}\widehat{BMN}+\widehat{DMN}=90^0\\\widehat{CMK}+\widehat{DMC}=90^0\end{cases}}\)(\(DM\perp BK\))
\(\Rightarrow\widehat{DMN}=\widehat{DMC}\)
nên MD là phân giác của \(\widehat{NMC}\)
b.
Trên tia đối của MA lấy điểm N sao cho MA=MN.
Kẻ \(DF\perp AM\left(F\in AM\right)\)
Tí nữa tớ hướng dẫn cho