K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Chương 2: Hàm số bậc nhất

28 tháng 1 2021

 Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua 

\(\Leftrightarrow y_o=mx_o+2m+1\)

\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)

\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)

NV
10 tháng 4 2022

Tọa độ I là: \(I\left(\dfrac{3}{2};-\dfrac{1}{4}\right)\)

Phương trình \(d_m\)\(m\left(x-2\right)-y+1=0\)

\(\Rightarrow d_m\) luôn đi qua điểm cố định \(A\left(2;1\right)\)

Gọi H là hình chiếu vuông góc của I lên \(d_m\) \(\Rightarrow IH=d\left(I;d_m\right)\)

\(\Rightarrow IH\le IA\) (theo định lý đường xiên - đường vuông góc)

\(\Rightarrow IH_{max}=IA\) khi H trùng A hay \(d_m\) nhận \(\overrightarrow{IA}=\left(\dfrac{1}{2};\dfrac{5}{4}\right)=\dfrac{1}{4}\left(2;5\right)\) là 1 vtpt

\(\Rightarrow\dfrac{m}{2}=\dfrac{-1}{5}\Rightarrow m=-\dfrac{2}{5}\)

10 tháng 4 2022

Mở ảnh

Thầy ơi con đang làm theo hướng này thì giải tiếp như thế nào vậy ạ?

6 tháng 1 2017

(Đề kiểu này quá nặng, đầy kĩ thuật...!!!)

Bước 1: Ta sẽ CM \(K\) có toạ độ \(\left(\frac{-m^2+2m+1}{m^2+1};\frac{-m^2+2m-3}{m^2+1}\right)\) (bước này bạn tự làm nha).

Bước 2: Ta sẽ tìm max của hàm số \(g=\frac{-m^2+2m+1}{m^2+1}\).

Nhân chéo lên: \(-m^2+2m+1=gm^2+g\) hay \(\left(g+1\right)m^2-2m+\left(g-1\right)=0\).

Coi đây là phương trình bậc 2 theo \(m\), giải như bình thường.

\(\Delta'=\left(-1\right)^2-\left(g+1\right)\left(g-1\right)=2-g^2\).

Để \(m\) tồn tại thì pt phải có nghiệm, tức là \(\Delta'=2-g^2\ge0\) (tới đây dừng được rồi).

------

Bước 3: Xét hàm số \(f\left(x\right)=\sqrt{2-x^2}-2\) (với ĐKXĐ \(2-x^2\ge0\)).

Do đó \(g=\frac{-m^2+2m+1}{m^2+1}\) thoả ĐKXĐ này (ở bước 2 mới CM).

Ta tính \(f\left(\frac{-m^2+2m+1}{m^2+1}\right)=\frac{-m^2+2m-3}{m^2+1}\) (biến đổi khá dài nhưng nói chung là làm được).

Tức là \(f\left(x\right)=y\) với \(x,y\) là hoành độ và tung độ của \(K\).

Vậy \(K\) di động trên đồ thị của hàm số \(y=\sqrt{2-x^2}-2\) (mình xin không giải thích tại sao lại nghĩ ra hàm số này).