K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 9 2020

Trong khoảng đã cho \(tanx\) luôn dương nên ko cần tìm ĐKXĐ

\(\Leftrightarrow1+sinx+cosx+sin2x+cos2x=0\)

\(\Leftrightarrow sinx+cosx+2sinx.cosx+2cos^2x=0\)

\(\Leftrightarrow sinx+cosx+2cosx\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(2cosx+1\right)=0\)

Do \(0< x< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sinx>0\\cosx>0\end{matrix}\right.\)

\(\Rightarrow\left(sinx+cosx\right)\left(2cosx+1\right)>0\)

Pt vô nghiệm trên \(\left(0;\frac{\pi}{2}\right)\)

22 tháng 9 2019


19 tháng 6 2020

Cái chỗ biến đổi tương đương cuối cùng bạn làm rõ chút dc ko???

NV
19 tháng 6 2020

Ném đoạn \(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\) vào casio mà bấm pt bậc 2 thôi, nó sẽ tách ra biểu thức như cái cuối cùng

Hoặc là tách thế này:

\(2sin^2x+\left(3\sqrt{2}-2\right)sinx+1\)

\(=2\left[sin^2x-2.\frac{2-3\sqrt{2}}{4}sinx+\left(\frac{2-3\sqrt{2}}{4}\right)^2-\left(\frac{2-3\sqrt{2}}{4}\right)^2\right]+1\)

\(=2\left(sinx-\frac{2-3\sqrt{2}}{4}\right)^2-2\left(\frac{2-3\sqrt{2}}{4}\right)^2+1\)

\(=2\left(sin^2x-\frac{2-3\sqrt{2}}{4}\right)^2+\frac{6\sqrt{2}-7}{4}\)

Với lưu ý \(\frac{6\sqrt{2}-7}{4}>0\) nên biểu thức luôn dương

24 tháng 6 2017

Đặt \(t=sinx\) , \(-1\le t\le1\)

Phương trình đã cho trở thành:

\(4t^2-2\left(\sqrt{3}+1\right)t+\sqrt{3}=0\)

\(\Leftrightarrow\left(2t-1\right)\left(2t-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{1}{2}\\t=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\) (nhận)

+ Với \(sinx=\dfrac{1}{2}\Rightarrow sinx=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

+ Với \(sinx=\dfrac{\sqrt{3}}{2}\Rightarrow sinx=sin\dfrac{\pi}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\left(k\in Z\right)\)

Vậy ....

NV
15 tháng 1 2021

Bạn tham khảo:

Có bao nhiêu nghiệm nguyên m để hàm số f(x)= m(2020 x-2cosx) sinx -x nghịch biến trên R A .vô số B.2 C.1 D.0 - Hoc24

5 tháng 9 2020

đề câu 1 đúng r

5 tháng 9 2020

ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên

bài trước mk bình luận bạn đọc chưa nhỉ

NV
24 tháng 3 2019

\(P=\frac{cosx+\sqrt{3}sinx}{\sqrt{3}cosx-sinx}=\frac{\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx}{\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx}=\frac{sin\left(\frac{\pi}{6}\right).cosx+cos\left(\frac{\pi}{6}\right).sinx}{cos\left(\frac{\pi}{6}\right).cosx-sin\left(\frac{\pi}{6}\right).sinx}\)

\(P=\frac{sin\left(\frac{\pi}{6}+x\right)}{cos\left(\frac{\pi}{6}+x\right)}=tan\left(\frac{\pi}{6}+x\right)\)

24 tháng 3 2019

c.ơn bạn

loading...  loading...  loading...  loading...  loading...  loading...  

NV
19 tháng 6 2020

\(\frac{1-sin2x}{1+sin2x}=\frac{sin^2x+cos^2x-2sinx.cosx}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(sinx-cosx\right)^2}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left[\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right]^2}{\left[\sqrt{2}.sin\left(x+\frac{\pi}{4}\right)\right]^2}=tan^2\left(\frac{\pi}{4}-x\right)\)

Bạn coi lại đề, vế phải là tan chứ ko phải cot

\(\frac{sin2x-2sinx}{sin2x+2sinx}=\frac{2sinx.cosx-2sinx}{2sinx.cosx+2sinx}=\frac{2sinx\left(cosx-1\right)}{2sinx\left(cosx+1\right)}\)

\(=\frac{cosx-1}{cos+1}=\frac{1-2sin^2\frac{x}{2}-1}{2cos^2\frac{x}{2}-1+2}=\frac{-2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}}=-tan^2\frac{x}{2}\)

20 tháng 6 2020

Cảm ơn bạn, mình sẽ xem lại.