1: Tìm 2 số tự nhiên biết tổng của chúng là 144 và ước chung lớn nhất bằng 8 ?
2: Tìm 2 số tự nhiên biết tích của chúng là 1286 và ước chung lớn nhất bằng 9 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Gọi hai số tự nhiên thỏa mãn đề bài là a và b thì theo bài ra ta có:
ƯCLN(a,b) =18 ⇒ \(\left\{{}\begin{matrix}a=18m\\b=18n\end{matrix}\right.\) (m.n) = 1 ; m,n \(\in\) N*
18m + 18n = 144 ⇒ m + n = 144: 18 = 8
Vì (m, n) = 1 ⇒ (m, n) = ( 1; 7); ( 3; 5)
th1: (m,n) = (1.7) ⇒ a = 18; b = 18 \(\times\) 7 = 126
th2: (m,n) = (3,5) ⇒ a = 18 \(\times\) 3 = 54; b = 18 \(\times\) 5 = 90
Kết luận hai cặp số tự nhiên thỏa mãn đề bài là:
18 và 126; 54 và 90
Lời giải:
Gọi 2 số cần tìm là $a,b$. Vì $ƯCLN(a,b)=12$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $(x,y)=1$.
Ta có:
$a+b=144$
$\Rightarrow 12x+12y=144$
$\Rightarrow x+y=144:12=12$
Mà $(x,y)=1$ nên $(x,y)$ có thể nhận giá trị: $(x,y)=(1,11), (5,7), (7,5), (11,1)$
$\Rightarrow (a,b)=(12, 132), (60, 84), (84,60), (132,12)$
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....