Chứng minh : a^2+b^2+3>ab+a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có a3 + b3 - ab(a + b) \(\ge0\)
\(\Leftrightarrow\)(a + b)(a2 - ab + b2 - ab)\(\ge0\)
\(\Leftrightarrow\)(a + b)(a - b)2 \(\ge0\)(đúng)
Vậy cái ban đầu là đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\dfrac{\left(a+b+c\right)\cdot\left(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2\right)}{2}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]}{2}>=0\)
=>\(a^3+b^3+c^3>=3abc\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a^3}{b}\ge a^2+ab-b^2\)
\(\Rightarrow\)\(a^3\ge a^2b+ab^2-b^3\)
\(\Leftrightarrow\)\(a^3-a^2b-ab^2+b^3\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\) (luôn đúng do a,b > 0; (a-b)2 >= 0 )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
\(a^2+b^2+3\ge ab+a+b\)
\(\Rightarrow2a^2+2b^2\ge2ab+2a+2b\)
\(\Rightarrow2a^2+2b^2-2ab-2a-2b\ge0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b^2\right)\ge0\)( luôn đúng )
Vậy \(a^2+b^2\ge ab+a+b\)\(\left(đpcm\right)\)