Cho tanα = √3 với 0 < α < π/2. Tính sinα, cos2α, sin(2α - π/3), tan(α + π/4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
1 cos 2 α = 1 + tan 2 α = 1 + 4 = 5
Vì π < α < 3 π 2 nên cos α < 0
Suy ra cos α = 1 5
Khi đó
M = sin 2 α + sin α + π 2 + sin 5 π 2 - 2 α
= sin 2 α + cos α + cos 2 α = sin 2 α + cos α + 2 cos 2 α - 1 = cos 2 α + cos α = 1 5 - 1 5 = 1 - 5 5
Đáp án C
Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0
\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)
\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)
\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)
Chúc bn học tốt!
\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)
\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)
\(cos2a=2cos^2a-1=-\frac{1}{2}\)
\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)