K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2019

khó kinh khủng

19 tháng 12 2018

C D B E A O P K M L Q S T R F N I x

a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)

Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD  (2)

Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).

b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"

Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ  = ^KML (Đối đỉnh)

Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)

Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)

Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)

Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)

Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).

c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)

Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.

Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF

Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM

Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)

Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD

Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID

Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)

Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)

Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI

Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)

Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.  

19 tháng 12 2018

Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(  

3 tháng 5 2018

         VE HINH

â) Xét tứ giác KCID ,co:

 gocI = (cungAB+cungCD):2   = (180+60):2 = 120 độ 

  gocK=(cungAB-cungCD):2   =(180-60):2=60 độ 

gócI+gocK=120do+60do=180 do 

Vay :  tứ giác KCID nội tiếp (tổng số đo 2 góc đối diện=180 độ )

       :góc AKB = 60 độ 

3 tháng 5 2018

b)Ta có:AB//CD

=>cungAC=cungBD=(180-60):2=60 do (2 cung nằm giữa 2 dây song song thì = nhau ) 

=>AC=BD(2 dây chan 2 cung = nhau thi = nhau )    (1)

=>tứ giác ACDB là hình thang cân 

***Xét : 3giac AKDva  3giac BKC ,co:

gocD=gocC=90do (vi gocC va gocD là góc nội tiếp chắn nửa đường tròn) 

gocCAD=gocDBC(2goc noi tiep cung chan cungCD)

AD=BC(2 đường chéo của hình thang cân thì = nhau )(cmt)

Do do:3giacAKD =3giacBKC (g-c-g)

=>KD=KC (2 canh tương ứng)     (2)

Ta lại có :KA=KC+AC(C nam giua A va K)  

                                                                      }(3) 

              :KB=KD+BD(D nam giua B va K)

Tu (1) ,(2) va (3) suy ra KA=KB  (4)

Tu (2) va (4) suy ra KA.KC=KB.KD .

a: góc BAC=1/2*sđ cung BC=90 độ

Vì góc BAE+góc BDE=180 độ

=>BAED nội tiếp

góc CAF=góc CDF=90 độ

=>CFAD nội tiếp

b: góc AEF+góc AFE=90 dộ

góc ABC+góc ACB=90 độ

mà góc AFE=góc ACB(=90 độ-góc B)

nên góc AEF=góc ABC

 

a: góc BAC=1/2*sđ cung BC=90 độ

Vì góc BAE+góc BDE=180 độ

=>BAED nội tiếp

góc CAF=góc CDF=90 độ

=>CFAD nội tiếp

b: góc AEF+góc AFE=90 dộ

góc ABC+góc ACB=90 độ

mà góc AFE=góc ACB(=90 độ-góc B)

nên góc AEF=góc ABC

c: góc MAE=1/2*sđ cung AC

góc MEA=góc DEC=90 độ-góc ACB=góc ABC=1/2*sđ cung AC

=>góc MAE=góc MEA

=>ΔMAE cân tại M

12 tháng 3 2020

 Mình giải hơi dài không biết có đúng không. Bạn tự vẽ hình nha!

Gọi F là trung điểm của AD. I là trung điểm của AC. Ta qui về chứng minh B,F,E thẳng hàng

Trước hết ta chứng minh bài toàn phụ: Từ S ngoài (O) kẻ 2 tiếp tuyến SC,SB và cát tuyến SDA, gọi M là giao của SO với BC thì BC là phân giác của góc AMD (bạn tự chứng mình nha).

Áp dụng vào bài toán ta có: AOMD nội tiếp \(\Rightarrow\widehat{AOD}=\widehat{AMD}\Leftrightarrow\frac{1}{2}\widehat{AOD}=\frac{1}{2}\widehat{AMD}\Leftrightarrow\widehat{ACD}=\widehat{AMB}\)

mà \(\widehat{ACD}+\widehat{ABD}=180^o,\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{ABD}=\widehat{AMC}\)

Xét (O) ta có: \(\widehat{ADB}=\widehat{ACB}\)

Suy ra \(\Delta ABD\)đồng dạng với \(\Delta AMC\)(g,g)  mà F là trung điểm AD, I là trung điểm AC suy ra tam giác ABF đồng dạng với tam giác AMI (c.g.c) suy ra \(\widehat{ABF}=\widehat{AMI}\)

Dễ thấy: \(\widehat{OMI}+\widehat{OIC}=90^o+90^o=180^o\)suy ra OMCI nội tiếp suy ra \(\widehat{MIC}=\widehat{MOC}=\frac{1}{2}\widehat{BOC}=\widehat{BAC}\Rightarrow\widehat{AIM}=\widehat{BDC}\)

Kết hợp với \(\widehat{BCD}=\widehat{BAD}=\widehat{MAC}\)(do tam giác ABD đồng dạng với tam giác AMC) suy ra tam giác AIM đồng dạng với tam giác CDB(g.g) suy ra \(\widehat{ABF}=\widehat{AMI}=\widehat{CBD}=\widehat{CAD}=\widehat{ACE}\left(AD//CE\right)=\widehat{ABE}\)suy ra B,F,E thẳng hàng hay BE đi qua trung điểm AD (đpcm)

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0