Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: Tứ giác BKQC nội tiếp đường tròn => ^CKQ = ^CBQ (2 góc nội tiếp cùng chắn cung CQ) (1)
Ta có: MK // AD => ^CKM = ^CAD (Đồng vị) . Mà ^CAD = ^CBD (Cùng chắn cung CD) => ^CKM = ^CBD (2)
Từ (1) và (2) => ^CKQ = ^CKM => 2 tia KQ và KM trùng nhau => 3 điểm K,M,Q thẳng hàng (đpcm).
b) Sửa đề: "5 điểm M,S,Q,R,T thẳng hàng ?"
Chứng minh tương tự câu a, ta có: 3 điểm L,M,R thẳng hàng => ^RMQ = ^KML (Đối đỉnh)
Tứ giác AKML là hình bình hành => ^KML = ^KAL = ^CAD. Do đó; ^RMQ = ^CAD (3)
Lại có: ^RTQ = ^RED (Cùng chắn cung RD); ^RED = ^CED = ^CAD => ^RTQ = ^CAD (4)
Từ (3) và (4) => ^RMQ = ^RTQ => Tứ giác RTMQ nội tiếp hay 4 điểm R,T,M,Q thuộc 1 đường tròn (*)
Mặt khác: ^TRS = ^BDE = ^BCE = ^TQS => Tứ giác TRQS nội tiếp hay 4 điểm T,R,Q,S thuộc 1 đường tròn (**)
Từ (*) và (**) => 5 điểm M,S,Q,R,T cùng thuộc 1 đường tròn (đpcm).
c) Giả sử S là 1 điểm chung của (PQR) và (O). Kẻ tia tiếp tuyến Fx của (O). Ta chứng minh Fx cũng là tiếp tuyến của (PQR)
Thật vậy: Gọi giao điểm thứ hai của AF với (PQR) là N. Kéo dài tia AP cắt (O) tại I.
Do L,M,R thẳng hàng; ML // AC => MR // AC => ^RMF = ^CAF (Đồng vị). Mà ^CAF = ^REF
Nên ^RMF = ^REF => Tứ giác EMRF nội tiếp => ^RFM = ^REM hay ^RFN = ^REM
Ta thấy: ^RFN = ^RPN => ^REM = ^RPN. Do 2 góc này đồng vị nên PN // EM hoặc PN // BE (5)
Xét đường tròn (O): 2 dây CD // BE => (BC=(DE => ^BAC = ^EAD
Có ^MAB = ^PAE => ^MAB - ^BAC = ^PAE - ^EAD => ^CAF = ^DAI => (CF=(ID
Xét (O): (CF = (ID, F và I nằm cùng phía so với CD => IF // CD => IF // BE (6)
Từ (5) và (6) => PN // IF => ^FIA = ^NPA (Đồng vị)
Dễ dàng c/m được PF = PI (\(\Delta\)PCF = \(\Delta\)PDI) => ^PIF = ^PFI hay ^FIA = ^PFI
Ta lại có: ^PFx = ^PFI + ^IFx = ^FIA + ^FAI = ^NPA + ^FAI = ^NPA + ^NAP = ^FNP (Góc ngoài)
Mà ^FNP = 1/2.Sđ(FP => ^PFx = 1/2.Sđ(FP => Fx là tia tiếp tuyến của đường tròn (PQR) => Đpcm.
Sorry, "5 điểm M,S,Q,R,T cùng nằm trên 1 đường tròn", mik gõ lộn :(
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.
c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)
Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)
\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)
d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy)
Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)
Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)
\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)
Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)
Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)
Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\)
\(\Rightarrow\) OA đi qua trung điểm của PQ (4)
Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ
khó kinh khủng