K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2019

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+c}=a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)\)

\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)

\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)-a-b-c\)

\(=a+b+c-a-b-c=0\)

11 tháng 3 2019

Ta có : \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=2^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{a+b+c}{abc}\right)=4-2\cdot\dfrac{abc}{abc}=4-2\cdot1=2\)

21 tháng 3 2019

\(\left(x^2+3x+4\right)^2=\left(x^2+3x+\frac{9}{4}+\frac{7}{4}\right)^2\)

\(=[\left(x+\frac{3}{2}\right)^2+\frac{7}{4}]^2\ge\left(\frac{7}{4}\right)^2=\frac{49}{16}\)

Vay GTNN của A là \(\frac{49}{18}\) đạt được khi x= \(-\frac{3}{2}\)

20 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\left(đpcm\right)\)

10 tháng 3 2020

Hình như bạn viết đề hơi ngược  mình nghĩ là :

Cho a,b,c khác 0 Chứng minh rằng : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Áp dụng BĐT AM - GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2.\frac{a}{c}\)

Tương tự có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\cdot\frac{b}{a}\)\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\cdot\frac{c}{b}\)

Khi đó : \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

Hay : \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

10 tháng 3 2020

ミ★NVĐ^^★彡a,b,c đã cho ko âm đâu???

9 tháng 5 2018

chứng minh cái gì vậy bạn ???

4 tháng 12 2017

đề đúng k z

29 tháng 12 2017

a+b+c = 0 => a+b=-c ; b+c=-a ; c+a=-b

=> (1+a/b).(1+b/c).(1+c/a) = a+b/b . b+c/c . c+a/a = -c/b . (-a)/c . (-b)/a = -abc/abc = -1

k mk nha