Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+c}=a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)\)
\(=a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)\)
\(=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)-a-b-c\)
\(=a+b+c-a-b-c=0\)
Vì \(a^2+b^2\ge2ab,b^2+1\ge2b\),ta có:
\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+1}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)và \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)
Khi đó\(A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+a}\right)\)
\(\Leftrightarrow A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)
Dấu"="trg BĐT trên xảy ra khi \(a=b=c=1\)
Vậy \(Max_P=\frac{1}{2}\Leftrightarrow a=b=c=1\)
Chắc không được GP đâu !!
Áp dụng bđt cauchy , ta có :
+) \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)
+) \(b^2+2c^2+3\ge2bc+2c+2\)
+) \(c^2+2a^2+3\ge2ac+2a+2\)
Khi đó , ta có :
\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+1}+\frac{abc}{ac+a+1}\right)\)( vì abc= 1 )
\(=\frac{1}{2}=VP\)( đoạn này ban tự phân tích ra nha , mk lmaf hơi tắt )
Vậy .................
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Dấu "=" xảy ra <=> a= b = c = 1/3
(bđt Svacxo lên mạng tra nha)
Áp dụng BĐT Cô - Si với ba số dương a , b , c , ta có
\(a+b+c\ge3\sqrt[3]{abc}\)
Áp dụng BĐT Cô - Si với ba số dương \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\), ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân hai vế của Bất đẳng thức, ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Dấu = sảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=1\\a=b=c\end{cases}\Rightarrow a=b=c=\frac{1}{3}}\)
đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1
Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)
=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b
Áp dung cô si cho a/b+b/a>hoac bang 2
Tg tự a/c+c/a:b/c+c/b cũng vậy
=>(a+b+c)(1/a+1/b+1/c)>hoac bang9
p =.1/a+1/b+1/c>hoac bang9
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\)
\(9+ab\ge2\sqrt{9ab}=6\sqrt{ab}\)
\(\Rightarrow VT=a+b\ge\frac{2\sqrt{ab}\cdot6\sqrt{ab}}{9+ab}=\frac{12ab}{9+ab}=VP\)
Bài 2:
a)\(\frac{a^2}{a+2b^2}=a-\frac{2ab^2}{a+2b^2}\ge a-\frac{2ab^2}{3\sqrt[3]{ab^4}}=a-\frac{2}{3}\sqrt[3]{a^2b^2}\)
\(BDT\Leftrightarrow\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\le3\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt[3]{b^2c^2}\le\frac{1}{3}\left(bc+b+c\right)\). Tương tự r` cộng theo vế ta có ĐPCM
b)\(\frac{a^2}{a+2b^3}=a-\frac{2ab^2}{a+2b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}b\sqrt[3]{a^2}\)
\(\ge a-\frac{2}{3}b\frac{\left(a+a+1\right)}{3}=a-\frac{2b}{9}-\frac{4ab}{9}\)
Vậy \(VT\ge a+b+c-\frac{2}{9}\left(a+b+c\right)-\frac{4}{9}\left(ab+bc+ca\right)\)
\(\ge\frac{7}{3}-\frac{4\left(a+b+c\right)^2}{27}=1=VP\)
Ta có : \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=2^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=4-2\cdot\left(\dfrac{a+b+c}{abc}\right)=4-2\cdot\dfrac{abc}{abc}=4-2\cdot1=2\)
Áp dụng bất đẳng thức AM - GM cho từng cặp số không âm (với \(a,b,c>0\)), ta có:
\(a+1\ge2\sqrt{a}\) \(\left(1\right)\)
\(b+1\ge2\sqrt{b}\) \(\left(2\right)\)
\(c+1\ge2\sqrt{c}\) \(\left(3\right)\)
Nhân từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\) (do \(abc=1\))
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\left(đpcm\right)\)