cho pt bậc 2: \(2x^2-\left(2m-1\right)x+m-1=0\)(ẩn x, tham số m). Tìm m để pt có 2 nghiệm cùng dấu>Khi đó hai nghiệm mang dấu gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm cùng dấu thì 2m-5>0
hay m>5/2
Để phương trình có 2 nghiệm trái dấu:
\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
a: khi m=1 thì pt sẽ là:
x^2+3x+1=0
=>\(x=\dfrac{-3\pm\sqrt{5}}{2}\)
b: Δ=(2m+1)^2-4m^2
=4m+1
Để phương trình có nghiệm kép thì 4m+1=0
=>m=-1/4
Khi m=-1/4 thì pt sẽ là:
x^2+x*(-1/4*2+1)+(-1/4)^2=0
=>x^2+1/2x+1/16=0
=>(x+1/4)^2=0
=>x+1/4=0
=>x=-1/4
a, Thay m=-3 vào pt ta có:
\(\left(1\right)\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\\ \Leftrightarrow2x^2-\left(-3+1\right)x+\left(-3\right)+1=0\\ \Leftrightarrow2x^2-\left(-2\right)x-2=0\\ \Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1\left(-1\right)=1+4=5\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b, Ta có: \(\Delta=\left[-\left(m+1\right)\right]^2-4.2\left(m+1\right)\\ =\left(m+1\right)^2-8\left(m+1\right)\\ =m^2+2m+1-8m-8\\ =m^2-6m-7\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow m^2-6m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge7\end{matrix}\right.\)
a) \(\left(x^2-2\right)\left(k-1\right)x+2k-5=0\)
\(\Delta=\left(k-1\right)^2-2k+5\)
\(=k^2-4x+6=\left(k-2\right)^2+2>0\)
=> PT luôn có nghiệm với mọi k
\(\text{Δ}=\left(-2m+1\right)^2-4\left(m-1\right)=4m^2-4m+1-4m+4=4m^2-8m+5=\left(2m-2\right)^2+1>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-1\end{matrix}\right.\)
Để phương trình có hai nghiệm cùng dấu thì m-1>0
hay m>1
Để phương trình có hai nghiệm cùng dấu:
\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương