Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)
\(=\left(2m-2\right)^2+4m\)
\(=4m^2-8m+4+4m=4m^2-4m+4\)
\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)
\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)
=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m
b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0
=>a*c<=0
=>1*(-m)<=0
=>-m<=0
=>m>=0
c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)
=>\(x_1+x_2=0\)
=>2(m-1)=0
=>m-1=0
=>m=1
d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)
\(=\sqrt{4m^2-8m+4+4m}\)
\(=\sqrt{4m^2-4m+4}\)
\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)
Dấu '=' xảy ra khi 2m-1=0
=>\(m=\dfrac{1}{2}\)
Phương trình có 2 nghiệm pb khi:
\(\Delta'=\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\)
\(\Rightarrow m>-\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x_1+x_2-2}{2}=m\\x_1x_2=m^2\end{matrix}\right.\)
\(\Rightarrow x_1x_2=\left(\dfrac{x_1+x_2-2}{2}\right)^2\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a,Phương trình có 2 nghiệm pb khi: \(\Delta'>0\Rightarrow\left(m+1\right)^2-m^2>0\Leftrightarrow2m+1>0\Leftrightarrow m>\dfrac{-1}{2}\)
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\)>=0
=>Phương trình luôn có hai nghiệm
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=3\)
\(\Leftrightarrow\sqrt{\left(\dfrac{1-2m}{2}\right)^2-4\cdot\dfrac{m-1}{2}}=3\)
\(\Leftrightarrow\dfrac{1}{4}\left(4m^2-4m+1\right)-2\left(m-1\right)-3=0\)
\(\Leftrightarrow m^2-m+\dfrac{1}{4}-2m+2-3=0\)
\(\Leftrightarrow m^2-3m-\dfrac{3}{4}=0\)
\(\Leftrightarrow4m^2-12m-3=0\)
Đến đây bạn chỉ cần giải pt bậc hai là được rồi
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
còn thiếu -b/a > 0 ạ