x^2 - 2(m+1)x + 2m - 4 = 0
a) C/m pt có 2 nghiệm phân biệt vs mọi giá trị của m
b) Gọi x1 , x2 là 2 nghiệm phân biệt. Tìm m để 3(x1 + x2) = 5x1x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
Δ=(2m-2)^2-4(-2m+5)
=4m^2-8m+4+8m-20=4m^2-16
Để PT có hai nghiệm phân biệt thì 4m^2-16>0
=>m>2 hoặc m<-2
x1-x2=-2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(2m-2)^2-4(-2m+5)=4
=>4m^2-8m+4+8m-20=4
=>4m^2=20
=>m^2=5
=>m=căn 5 hoặc m=-căn 5
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)
\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)
⇒ Phương trình hai nghiệm phân biệt
Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)
Có : \(x_1^2+x_2^2=52\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)
\(\Leftrightarrow4m^2-24m+36-4m+16=52\)
\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)
Vậy...
Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)
\(=4m^2-4m+1-4m^2+8\)
\(=-4m+9\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-4m+9>0\)
\(\Leftrightarrow-4m>-9\)
hay \(m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)
Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)
\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)
\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)
\(\Leftrightarrow-4m=-4\)
hay m=1(thỏa ĐK)
Vậy: m=1
PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m-1)^2-4(m^2-2)>0`
`<=>4m^2-4m+1-4m^2+8>0`
`<=>-4m+9>0`
`<=>m<9/4`
Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`
`|x_1-x_2|=\sqrt5`
`<=>(x_1-x_2)^2=5`
`<=>(x_1+x_2)^2-4(x_1.x_2)=5`
`<=>4m^2-4m+1-4m^2+8=5`
`<=>-4m+8=5`
`<=>4m=3`
`<=>m=3/4(tm)`
Vậy `m=3/4=>|x_1-x_2|=\sqrt5`
a.
Do \(x_1=-1\) là nghiệm
\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)
\(\Rightarrow m-3-m-5-m+7=0\)
\(\Rightarrow m=-1\)
Theo định lý Viet:
\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)
b.
Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)
Mobilegends nữa ko : (((((( 32k vàng rồi nha
Bài này t có thể xài \(\Delta\)hay \(\Delta'\)đều được nhé vì bài này hệ số b chia hết cho 2 nên xài \(\Delta'\)đi cho nó easy hơn 1 tí >:
Công thức: \(\Delta'=b'^2-ac\) chứ xài \(\Delta=b^2-4ac\) nó dài hơn tí
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-4\right).1\)
\(\Delta'=m^2+2m+1-2m+4\)
\(\Delta'=m^2+5>0\) ( luôn đúng )
P/s câu a chỉ cần chứng minh pt đó lớn hơn 0 sẽ có 2 nghiệm phân biệt
b) \(x_1;x_2\) là 2 nghiệm phân biệt của phương trình ( gt )
Xài hệ thức vi - ét =)
\(3\left(x_1+x_2\right)=5x_1x_2\)\(\Leftrightarrow6\left(m+1\right)=5\left(2m-4\right)\)
Tới đây easy rồi giải nốt vs kết luận đi nha :))))
ừm tối làm trận xếp hạng rồi nghỉ vô naruto online đi S930 nha
Đợi t làm vào đã rồi chơi tí học tiếp