K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2019

7n-40 chia het cho n-7

Co : 7n-40=7(n-7)-33 chia het cho n-7 ma 7(n-7) chia het cho n-7

=>33 chia het cho n-7

=>n-7 la U(33)={1;3;11;33}

=>n thuoc {8;10;18;40}

Vay n thuoc {8;10;18;40}

22 tháng 1 2019

Ta có :

7n - 49 +9 chia hết cho n-7 

mà 7n - 49 chia hết cho n-7 vì 7n-49 = 7(n-7)

=> 9 chia hết cho 7 => n-7 thuộc ước của 9 

ta lập bảng:

n-7-1-3-9139
n64-281016
6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........

a: 7n chia hết cho 3

mà 7 không chia hết cho 3

nên \(n⋮3\)

=>\(n=3k;k\in Z\)

b: \(-22⋮n\)

=>\(n\inƯ\left(-22\right)\)

=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)

c: \(-16⋮n-1\)

=>\(n-1\inƯ\left(-16\right)\)

=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)

d: \(n+19⋮18\)

=>\(n+1+18⋮18\)

=>\(n+1⋮18\)

=>\(n+1=18k\left(k\in Z\right)\)

=>\(n=18k-1\left(k\in Z\right)\)

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

10 tháng 8 2017

a) ( n\(^2\) + 7n - 8) chia hết cho n+3 

Có : \(\frac{n^2+7n-8}{n+3}=n+4+\frac{-20}{n+3}\) là 1 số nguyên \(\Rightarrow-\frac{20}{n+3}\in Z\Rightarrow-20⋮n+3\Rightarrow n+3\inƯ\left(-20\right)=\) \(\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)

\(\Rightarrow n\in\left\{-23;-13;-8;-7;-5;-4;-2;0;1;2;7;17\right\}\)

b) (n\(^2\) + 5) chia hết cho n-2

\(\Rightarrow\frac{n^2+5}{n+2}=\frac{n.n+5}{n+2}=\frac{n\left(n+2\right)-2n+5}{n+2}=n-\frac{2n-5}{n+2}=n-\frac{2\left(n+2\right)-9}{n+2}\)

\(n-2+\frac{9}{n+2}\) \(;n-2\in Z\Rightarrow\frac{9}{n+2}\in Z\) \(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)=\left\{-1-3;-9;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-3;-5;-11;-1;1;7\right\}\)

21 tháng 8 2017

Mình cũng làm như cách của Ngân 

Ủng hộ 1 TK cái !

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

15 tháng 12 2016

Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)

Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Sau đó tìm n

 

15 tháng 12 2016

bạn chắc câu này đúng chứ

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)