Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( n\(^2\) + 7n - 8) chia hết cho n+3
Có : \(\frac{n^2+7n-8}{n+3}=n+4+\frac{-20}{n+3}\) là 1 số nguyên \(\Rightarrow-\frac{20}{n+3}\in Z\Rightarrow-20⋮n+3\Rightarrow n+3\inƯ\left(-20\right)=\) \(\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)
\(\Rightarrow n\in\left\{-23;-13;-8;-7;-5;-4;-2;0;1;2;7;17\right\}\)
b) (n\(^2\) + 5) chia hết cho n-2
\(\Rightarrow\frac{n^2+5}{n+2}=\frac{n.n+5}{n+2}=\frac{n\left(n+2\right)-2n+5}{n+2}=n-\frac{2n-5}{n+2}=n-\frac{2\left(n+2\right)-9}{n+2}\)
\(n-2+\frac{9}{n+2}\) \(;n-2\in Z\Rightarrow\frac{9}{n+2}\in Z\) \(\Rightarrow9⋮n+2\Rightarrow n+2\inƯ\left(9\right)=\left\{-1-3;-9;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-11;-1;1;7\right\}\)
a: 7n chia hết cho 3
mà 7 không chia hết cho 3
nên \(n⋮3\)
=>\(n=3k;k\in Z\)
b: \(-22⋮n\)
=>\(n\inƯ\left(-22\right)\)
=>\(n\in\left\{1;-1;2;-2;11;-11;22;-22\right\}\)
c: \(-16⋮n-1\)
=>\(n-1\inƯ\left(-16\right)\)
=>\(n-1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
=>\(n\in\left\{2;0;3;-1;5;-3;9;-7;17;-15\right\}\)
d: \(n+19⋮18\)
=>\(n+1+18⋮18\)
=>\(n+1⋮18\)
=>\(n+1=18k\left(k\in Z\right)\)
=>\(n=18k-1\left(k\in Z\right)\)
a) 10 chia hết cho n-1
n-1 thuộc Ư của (10)={1,2,5,10}
n thuộc {2,3,7,11}
A)n+11\(⋮\)n-1
n-1\(⋮\)n-1
n+11-(n-1)\(⋮\)n-1
n+11-n-1\(⋮\)n-1
10\(⋮\)n-1
\(\Rightarrow\)n-1={1;2;5;10}
\(\Rightarrow\)n={2;3;6;11}
b)7.n\(⋮\)n-11
7n:\(⋮\)
n-1
7n-7n:n-1
0:n-1
Vậy n-1={0}
Vậy n={1}
7n-40 chia het cho n-7
Co : 7n-40=7(n-7)-33 chia het cho n-7 ma 7(n-7) chia het cho n-7
=>33 chia het cho n-7
=>n-7 la U(33)={1;3;11;33}
=>n thuoc {8;10;18;40}
Vay n thuoc {8;10;18;40}
Ta có :
7n - 49 +9 chia hết cho n-7
mà 7n - 49 chia hết cho n-7 vì 7n-49 = 7(n-7)
=> 9 chia hết cho 7 => n-7 thuộc ước của 9
ta lập bảng: